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Abstract

In this paper, we propose a novel perception-based shape
decomposition method which aims to decompose a shape
into semantically meaningful parts. In addition to three
popular perception rules (the Minima rule, the Short-cut
rule and the Convexity rule) in shape decomposition, we
propose a new rule named part-similarity rule to encourage
consistent partition of similar parts. The problem is for-
mulated as a quadratically constrained quadratic program
(QCQP) problem and is solved by a trust-region method.
Experiment results on MPEG-7 dataset show that we can
get a more consistent shape decomposition with human per-
ception compared with other state-of-the-art methods both
qualitatively and quantitatively. Finally, we show the ad-
vantage of semantic parts over non-meaningful parts in ob-
ject detection on the ETHZ dataset.

1. Introduction
Many psychological studies have shown the important

role of parts that plays in object perception and recognition
(e.g., [8, 19]). Part-based object representation becomes
popular due to its flexibility and robustness to account for
the compositional structures of objects.

Object parts are usually generated by two types of meth-
ods, the learning-based methods and the rule-based meth-
ods. The former learns parts by grouping small curve seg-
ments into larger structures (as parts) according to the s-
tatistics of a dataset (e.g., [5, 22]). However, most of the
datasets are of limited size and prone to be biased, hence,
the learned parts usually are dataset-dependent and quite d-
ifferent from human perception. In addition, the learning
can be computationally expensive.

We argue that perceptual meaningful parts have the ad-
vantage in many vision tasks, such as object detection, be-
cause such parts are usually more stable in different envi-
ronments. This is because that the human vision system
(HVS) has evolved for millions of years to adapt to the vi-

sual structure of natural scenes from a huge amount of ex-
amples in the physical world, which is adept at capturing
the statistically stable structures of objects in the presence
of deformation and articulation. In addition, the semantic
parts are useful in judging the affordance of objects and they
are the key to transferring the knowledge between different
objects via the shared parts [1].

In order to obtain semantic parts, perception-rule-based
methods are often adopted to decompose a shape into a
number of parts (e.g., [7, 9, 14, 17]). The perception rules
are usually generic and easy to compute. Some generic per-
ception rules have been examined in psychological stud-
ies, e.g., the Minima rule [8], the Short-cut rule [20] and
the Convexity rule [11, 21]. The Minima rule suggests the
shape should be divided at loci of negative minima of cur-
vature along the contour. The Convexity rule requires a part
to be convex. The Short-cut rule suggests to decompose
shapes into parts using the shortest possible cuts.

Lien and Amato [13] and Gopalan et al. [7] proposed
methods for approximate shape decomposition based on the
Convexity rule. Liu et al. [14] formulated the convex shape
decomposition as a linear programming problem and con-
siders the Short-cut rule. Ren et al. [17] and Jiang et al. [9]
proposed methods for perception-based shape decomposi-
tion which add the Minima rule in their works.

In this paper, we propose a new method to acquire se-
mantic parts via perception-based shape decomposition. We
observe that objects often have similar parts (e.g., the four
legs and feet of a camel in Fig. 3). Even these parts may
look different due to deformation, people still try to extract
them by making them as similar as possible. Therefore, be-
sides the existing rules adopted by [9, 14, 17], we add a new
rule to encourage the consistent decomposition of similar
parts. In addition, most of the works based on the Convex-
ity rule tend to generate redundant parts in order to satisfy
the convexity constraint. In this work, we add a quadratic
constraint to avoid this problem.

We formulate the problem as a combinatorial optimiza-
tion problem by selecting an optimal subset of candidate



cuts. We solve this constrained optimization problem by a
trust-region method designed for nonlinear programming.

Extensive experiments have been done on the MPEG-
7 [12] shape dataset. We propose a novel quantitative mea-
sure to evaluate the decomposition consistency of the pro-
posed method w.r.t. human decomposition. Experiment
results demonstrate significant improvement in this respect
both qualitatively and quantitatively.

To prove the advantage of semantic parts in the vision
tasks, we conduct the object detection experiment on the
ETHZ dataset [6]. We use the semantic parts obtained by
the proposed decomposition method to detect objects in nat-
ural scenes and compare the detection rate with the same
detection method using a set of non-semantic random parts.
The result shows that the detection rate of using the seman-
tic parts is much better than the random parts, especially in
the cases of objects with articulation.

The rest of the paper is organized as follows. Section 2
introduces the proposed method. Section 3 shows the ex-
periment results. Finally, Section 4 concludes the paper.

2. Perceptual-based Shape Decomposition

2.1. Perception Rules

The three perception rules usually adopted by humans to
decompose a shape include the Minima rule [8], the Short-
cut rule [20] and the Convexity rule [11, 21]. The Minima
rule suggests that the endpoints of a cut usually locate at the
places where the curvature is local minimum. The Short-
cut rule prefers to minimize the total cut length, and the
Convexity rule requires parts to be convex.

Apart from these rules, we also observe that an object
often has similar parts, e.g. four legs and feet of a camel (as
shown in Fig. 3). Even they may appear differently on a pro-
jected profile due to pose variation and deformation, peo-
ple tend to identify them equally since they share the same
perceptual meaning/function in understanding a shape. We
name this rule as part-similarity rule.

2.2. Formulation

Perceptual-based shape decomposition is to decompose
a shape into non-overlapping parts consistently with human
perception. In our problem, parts are generated by a set of
cuts on a shape. Each cut is a line segment, both its end-
points lie on the boundary of the shape. So the problem can
be formulated as selecting an optimal subset of candidate
cuts which can derive perceptual-based parts and do not in-
tersect with each other.

We define Cp as a set of candidate cuts and C∗ as the
selected optimal cuts. We introduce a binary vector x to
indicate the selection of the candidate cuts. xi = 1 means
Ci is selected; otherwise, xi = 0.

Then our problem can be formulated as

min
x
{LTx− aITx+ xTHx− bxTHsimx}

s.t. Pi is convex ∀i.
(1)

According to the Short-cut rule [20], L is the cut length
vector s.t. Li is the length of cut Ci. Hn×n is a penalty
matrix s.t. if Cj and Ck intersect, H(i, j) = +∞; oth-
erwise, H(i, j) = 0. I() is a function that measures the
improvement of shape convexity by a cut. Hsim() encour-
ages consistent cuts for similar parts. a and b are two free
parameters. {Pi} are parts derived by C∗.

In the following we will first explain how to formulate
the “convex” constraint so as to obtain near-convex parts
{Pi}, then, introduce the definitions of Hsim() and I().

2.3. Convexity Constraint

As strict convex shape decomposition can generate many
spurious parts due to the noise (e.g., small bumps) or smal-
l deformation (e.g., bending) on shape, we consider near-
convex shape decomposition, i.e., given a threshold ε, we
want to ensure the concavity of a decomposed part is less
than ε.

In this project, we obtain near-convex parts through cut-
s. In the following, we first introduce the concavity mea-
surement of two points and a part as proposed in [14], then
present the method of generating cuts to ensure the convex-
ity of parts, followed by the formulation of the convexity
constraint in Eq. 1.

2.3.1 Mutex pair and Concavity measures

Given an arbitrary direction (e.g., the vertical direction
shown in Fig. 1), the concavity of two points within a shape
w.r.t. the given direction is defined as:

Concavityf (p1, p2) = f(Sf (p1, p2))−max(f(p1), f(p2)),
(2)

where f() is the Morse function, which is defined as the
projection of a point on the given direction, i.e., f(p) = <
d, p > where d is the unit vector representing the direction
and < . > is the inner product. Sf (p1, p2) is the lowest of
the point set along the given direction composed of points
which are the highest on the path connecting a given pair of
points (e.g., p1 and p2) within the shape.

Fig. 1(a) gives an example, of which Sf (p1, p2) and
Sf (p2, p3) are the same and we denote them as S. Thus
Concavityf (p1, p2) = fS − f1 is less than ε, whereas,
Concavityf (p2, p3) = fS − f2 is greater than ε. Any pair
of points whose concavity is more than ε is defined as a mu-
tex pair [14]. So, 〈p2, p3〉 is a mutex pair. And Sf (p2, p3)
is called a saddle point of the mutex pair w.r.t. the given
direction.



(a) (b) 

Figure 1. (a) Vertices p2 and p3 is a mutex pair while p1 and p2
is not under the threshold ε. S is a saddle point and f is Morse
function which both correspond to the given direction. The blue
regions are mutex pair of regions. (b) Red lines SS1 and SS2

are two candidate cuts generated by S, the orange lines are the
skeleton of the shape.

If we consider all the directions, then the concavity of a
pair of points is defined as

Concavity(p1, p2) = max
f

Concavityf (p1, p2), (3)

For a shape part P , its concavity is defined as

Concavity(P ) = max
p1∈P,p2∈P

Concavity(p1, p2), (4)

where p1 and p2 are two arbitrary points in P . If the con-
cavity of every pair of points in a part is less than ε, then
the concavity of the part is less than ε. We call such a part
a “ε-convex part”. To ensure all the decomposed parts are
ε-convex, we shall separate all the mutex pairs of a shape
by cuts, although some of these cuts are spurious. Our goal
is to find the optimal set of cuts for shape decomposition.

In order to extend the concept of mutex pair from point
to point set, two concavity measures of two point sets R1

and R2 are defined as

w(R1, R2) = min
p1∈R1,p2∈R2

Concavity(p1, p2), (5)

W (R1, R2) = max
p1∈R1,p2∈R2

Concavity(p1, p2). (6)

If w(R1, R2) ≥ ε, every pair of points from R1 and R2

forms a mutex pair. R1 and R2 is called a mutex pair of
regions (e.g., the blue regions shown in Fig. 1(a)). The con-
cavity of R1 and R2 is defined as W (R1, R2). We use the
method in [4, 14] to find mutex pairs of regions in our im-
plementation and select a subset of candidate cuts to satisfy
them in order to get ε-convex decomposition.

2.3.2 Generating candidate cuts to separate the mutex
pairs

By considering the Minima rule introduced above, we pro-
pose candidate cuts using all the saddle points of a shape.
Specifically, we use a saddle point as one of the endpoints
of a cut. In order to find the other, we utilize the idea of

local symmetry (A part is locally symmetric w.r.t. its skele-
ton.). A skeleton point has two symmetric points on the
shape boundary. The two points are the contacting points
between the shape contour and its maximal disk centered
at the skeleton point [18]. For example, in Fig. 1(b), the
orange lines are the skeleton of the shape. S and S2 are
the two corresponding contour points of a skeleton point O.
Hence, to get a candidate cut, we first compute the skeleton
of a shape using method in [18], then find the symmetric
points of the saddle point S based on its skeletons, i.e., S1

and S2. Then the cuts SS1 and SS2 are two candidate cuts
generated by S.

2.3.3 Formulating the convexity constraint

The candidate cuts generated by the above method are usu-
ally surplus. We shall select an “optimal” set of cuts that
is able to separate all the mutex pairs, and hence generates
near-convex parts. (The meaning of the optimality encoded
in Eq. 1.)

To achieve this, a binary matrix A is defined, which sig-
nifies the separation relationship between the mutex pairs
(MP = {mp1,mp2, . . . ,mpm}) and the candidate cuts
Cp. A is a matrix of size m× n, where m is the number of
mutex pairs, n is the number of candidate cuts. If a mutex
pair mpi can be separated by a cut Cj , then A(i, j) = 1;
otherwise 0. So if we constrain A(i, :)x ≥ 1, then mutex
pair i is separated at least once by the optimal set of cuts,
which is also used in [14].
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Figure 2. An example of a mutex pair satisfied by two cuts. The
mutex pairR1 andR2 can be separated by the combination of cuts
C1 and C2, so there is no need for C3.

Pruning redundant cuts Although we can satisfy
all the mutex pairs using the above constraint, it can produce
redundant cuts. This is due to the double counting of mutex
pairs. As shown in Fig. 2, R1 and R2 are a mutex pair of
regions w.r.t. saddle point S. C3 serves to separate them.
However, the combination of two lower level cuts C1 and
C2 is also able to separate R1 and R2; in addition, they can
separate the two rear legs of the camel as well. Hence C3

becomes redundant.
We design a series of matrices A{1,2,··· ,m}2 of which Ai2

is a binary matrix signifying the separation of mutex pair



mpi by all candidate cut pairs. The size of Ai2 is n × n. If
the mutex pair mpi can be separated by the combination of
cut Cj and Ck, then Ai2(j, k) = 1; otherwise 0.

We extend the above convexity constraint to A(i, :)x +
1
2x

TAi2x ≥ 1 to enforce that the ith mutex pair must be sep-
arated either by a single cut or the combination of two. One
may wonder there may exist redundancy caused by three or
more cuts, however, we have not encountered such a case in
our dataset.

2.4. Hsim() – the part-similarity term

We aim to encourage a consistent decomposition of sim-
ilar parts. As shown in Fig. 3, each candidate cut can sepa-
rate the shape into two portions and we choose the smaller
one as its corresponding part. We measure the similarity of
two parts by their contours using the similar method intro-
duced in [15].

For each sampled contour, two matrices MD and Mθ are
designed as descriptors to account for the distance and ori-
entation for each pair of points (pi, pj) on the contour, re-
spectively.

MD(i, j) = ‖−→pi −−→pj‖2, (7)

Mθ(i, j) = ∠(−→pi −−→pj ) ∈ [−π, π], (8)

where 1 ≤ i, j ≤ n. Notice that we evenly sample the same
number of points on any two contours, say n, in order to
compare their similarity.

Then the similarity of two contours, T1 and T2, is defined
as

φ(T1, T2) = (φD(T1, T2) + φθ(T1, T2))/2, (9)

where

φD(T1, T2) =
1

n2

n∑
i=1

n∑
j=1

exp{− (M1
D(i, j)−M2

D(i, j))2

(M1
D(i, j) +M2

D(i, j))2σ2
},

(10)

φθ(T1, T2) =
1

n2

n∑
i=1

n∑
j=1

exp{− (M1
θ (i, j)−M2

θ (i, j))
2

δ2
}.

(11)
σ and δ are two parameters to tolerate the differences of

the two contours in distance and orientation, respectively.
In Eq. 1, we define Hsim(i, j) = φ(Ti, Tj) to account

for the similarity of a pair of contours derived from cut Ci
and cut Cj . The higher the value, the more similar the two
contours.

2.5. I() – the cut income term

In order to improve the convexity of the decomposed
parts, we employ the cut income term as proposed in [9].
The income of a cut is defined as the concavity of the sepa-
rated mutex pair of regions by the cut. As shown in Fig. 1
(b), the concavity of mutex pair (blue regions) is fS − fp
based on Eq. 6. So the income of the cut SS1 = fS − fp.

𝐻𝑠𝑖𝑚 (1,2)=0.8 

𝐻𝑠𝑖𝑚 
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…… …… 

Φ𝐷 = 0.85 

Φ𝜃 = 0.75 

Φ = 0.8 

Figure 3. The procedure to construct part-similarity matrix Hsim.
The red lines are candidate cuts of the camel. We sample the corre-
sponding contour of each cut and compute the similarity between
every two contours to get part-similarity matrix Hsim.

2.6. Optimization

Now Eq. 1 can be rewritten as

min
x
{LTx− aITx+xTHx− bxTHsimx}

s.t. A(i, :)x+
1

2
xTAi2x ≥ 1,∀i , x ∈ {0, 1}n.

(12)

To find the optimal solution, we relax x to be continuous
(xi ∈ [0, 1]), and the problem becomes a standard quadrat-
ically constrained quadratic program(QCQP). We solve it
using a trust-region method [3]. It’s based on the interior
point method, which is aimed to solve nonlinear program-
ming problems.

3. Experiments
To evaluate the proposed method, we conduct two ex-

periments. In the first experiment, we compare our results
with human decomposition on the MPEG-7 dataset. Both
the quantitative and qualitative evaluations show the im-
proved consistency to human performance compared with
other shape decomposition methods. To justify the moti-
vation of this work, we show that object detection on the
ETHZ dataset using semantically meaningful parts greatly
improve the detection rate than using non-meaningful parts,
especially in the case of object articulation.

3.1. Shape Decomposition

3.1.1 Preprocessing

Many objects have curved parts (e.g., curved tails as shown
in Fig. 4). These parts greatly affect the convexity of the
object shape. In order to entertain the convexity constraint,
curved parts will be cut into pieces as shown in Fig. 4 (a),



which is not consistent to human perception. To solve this
problem, we adopt the method proposed in [9] to straighten
the curved parts as preprocessing. We first detect the tail of
the ray by evaluating the “slimness” and average curved an-
gle and then straighten it. Then we decompose the straight-
ened shape (Fig. 4 (c)) and map the cuts back to the original
shape (Fig. 4 (b)). In the straightening process, the skeleton
is straightened firstly, then shift the points on the contour
accordingly. For details, please refer to [9].

(a) (b) (c) 

Figure 4. Straightening process. (a) The decomposition result on
the original shape without straightening. (b) The mapped result of
the straightened result by (c). (c) The decomposition result on the
straightened shape.

3.1.2 Experiment method

To verify the consistency of the decomposition by the pro-
posed method with the human decomposition, we choose 20
representative categories which are suitable for decomposi-
tion from the MPEG-7 shape dataset as shown in Fig. 5.
Each category contains 20 shape instances. We randomly
choose 10 shapes from each category and ask 12 people to
decompose them according to their own perception.

Figure 5. 20 categories selected from MPEG-7 dataset.

Hence, there are two groups of decompositions, one is
by the proposed method and the other is from humans. In
each shape category, for each instance i, we define G(i, 1)
to measure the decomposition similarity between the pro-
posed method and the humans; we define G(i, 2) to mea-
sure the decomposition consistency among humans.

G(i, 1) =
1

n

n∑
j=1

gi(0, j), (13)

G(i, 2) =
1

n(n− 1)

n∑
j=1

∑
k 6=j

gi(j, k), (14)

in which we index the results by the proposed method by
‘0’ and the results by humans from ‘1’ to ‘n’, where n =
12. gi(j, k) is the matching score function between the j-
th decomposition with the k-th decomposition on the i-th
shape instance. And it is defined as

gi(j, k) =

Q∑
q=1

Aijq
Ai

max
q′∈{1,··· ,Q′}

F1(Pijq, Pikq′ ), (15)

where Aijq is the area of part Pijq which denotes the q-th
part of the j-th decomposition for shape i. Ai is the total
area of shape i. Q and Q

′
are the total part number of the

j-th decomposition and k-th decomposition, respectively.
F1(Pijq, Pikq′ ) = 2 · precision×recallprecision+recall is the F1 score, which
denotes the matching score of part Pijq and part Pikq′ . The
precision is defined as the ratio of intersection area and the
area of Pijq; the recall is defined as the ratio of intersection
area and the area of Pikq′ . The higher the F1 score, the
better the matching. If two parts are identical, the precision
and the recall are both 1, and so is the F1 score. If two parts
have little intersection, the F1 is close to 0 and we define
F1 = 0 if two parts do not overlap.

3.1.3 Quantitative comparison

Table 1 compares the decomposition consistency between
different methods w.r.t human beings (using the average of
G(i, 1) over instance i). These methods include ACD [7],
CSD [14], MNCD [17], PSD [9]. We can see that the pro-
posed method performs the best in 10 object classes out of
20.

To further show that the proposed method is more statis-
tically consistent with human decomposition than the other
methods, we conduct the pairwise t-test experiment. The
pairwise t-test is on the vectors G. If the decomposition
consistency between the proposed method and human is
less than the consistency among human beings, the testing
result is 1; otherwise 0. From Table 2 we can see that on
17 object classes the decomposition consistency by the pro-
posed method is not significantly less than human, whereas
the other methods only get 7, 9, 11 and 14 classes. The
t-test is performed at the 5% significance level.

3.1.4 Qualitatively visual comparison

Some visual comparisons between the proposed method
and MNCD [17], PSD [9] and human decomposition are
shown in Fig. 10. The first column is the result from M-
NCD and the second is from PSD. Both aim to decompose
the shape into natural parts. The third column is the results
of ours and the last one is the human decomposition.

As can be seen from the top four rows when consider-
ing the part-similarity, our method is able to decompose



apple bat beetle bird Bone camel carriage cattle chicken crown
ACD [7] 0.9933 0.7554 0.8692 0.7093 0.8861 0.6950 0.7708 0.6653 0.7363 0.9146
CSD [14] 0.9864 0.7405 0.8865 0.7987 0.8537 0.7724 0.7919 0.9060 0.7656 0.9575

MNCD [17] 0.9759 0.7665 0.8952 0.8398 0.9524 0.6371 0.7841 0.8553 0.7506 0.9580
PSD [9] 0.9893 0.7645 0.8840 0.8802 0.9517 0.6928 0.7961 0.9044 0.8131 0.9640

Ours 0.9847 0.7571 0.9091 0.8846 0.9537 0.7977 0.7809 0.9215 0.8425 0.9647
device1 elephant flatfish fork frog Glas lmfish octopus ray tree

ACD [7] 0.9784 0.7923 0.9879 0.7742 0.6878 0.9799 0.6622 0.8697 0.9568 0.6887
CSD [14] 0.8997 0.8462 0.9461 0.8361 0.8209 0.8565 0.6431 0.9306 0.9303 0.6568

MNCD [17] 0.8221 0.8086 0.9908 0.8560 0.7736 0.9501 0.5945 0.9291 0.8882 0.7088
PSD [9] 0.8813 0.8660 0.9910 0.8520 0.8232 0.9493 0.6099 0.9531 0.9630 0.7228

Ours 0.9861 0.8586 0.9909 0.8850 0.7997 0.9136 0.6024 0.9331 0.9634 0.6917
Table 1. F-measure decomposition consistency result between our method and human beings comparing with ACD [7], CSD [14], M-
NCD [17] and PSD [9]. Our method outperforms others in 10 categories out of 20.

ACD CSD MNCD PSD Ours
apple 0 0 0 0 0
bat 0 0 0 0 0

beetle 0 0 0 0 0
bird 1 1 1 0 0

Bone 1 1 0 1 0
camel 1 0 1 1 0

carriage 0 0 0 0 0
cattle 1 1 1 1 0

chicken 1 1 1 0 0
crown 1 0 0 0 0

device1 1 1 1 1 0
elephant 1 1 1 0 0
flatfish 0 1 0 0 0

fork 1 1 0 1 0
frog 1 0 0 0 0
Glas 0 1 0 0 1

lmfish 1 0 1 1 1
octopus 1 0 0 0 0

ray 0 1 1 0 0
tree 1 1 1 0 1
all 7 9 11 14 17

Table 2. Pairwise t-test of our result comparing with ACD [7],
CSD [14], MNCD [17] and PSD [9]. The results by our method are
consistent with human decomposition statistically in 17 categories
out of 20.

shape into similar parts. This makes the decomposed part-
s more consistent with human perception. The fourth to
seventh rows demonstrate the advantage of introducing A2

constraint to the optimization objective function. It serves
to remove redundant cuts. The last row is a failure case,
which will be discussed in Section 3.3.

3.1.5 Evaluation of parameters

There are three free parameters in our formulation, ε, a and
b. ε measures the tolerance to the concavity. a and b weight

Figure 6. Evaluation of ε. The decomposition results when ε =
0.01, 0.05 and 0.1. In our experiment, we choose ε = 0.05.

Figure 7. Evaluation of b. The decomposition results when b =
0, 0.05 and 0.1. In our experiment, we choose b = 0.1.

the cut income and part-similarity, respectively. In our ex-
periment, we set ε = 0.05, a = 0.1 and b = 0.1.

Fig. 6 shows the decomposition results under different
ε. The less ε is, the more convex the decomposed parts.
So when ε increases, the decomposition will ignore smaller
concave parts due to local distortions and get a relatively
robust result.

Fig. 7 shows the decomposition results at different values
of b. A larger b encourages more cuts with similar parts,
hence, can get more semantic decomposition.

In addition, for the number of Morse functions, the more
we choose, the more robust the method can be when dealing
with rotation. In our experiment, the number is set 16 which
is also adopted in [9, 14, 17].



3.2. Object Detection

To demonstrate the advantage of semantic parts, we con-
duct a part-based object detection experiment. We decom-
pose the shapes to generate semantic parts (Fig. 8 (a)), and
learn a set of part templates by clustering obtained part in-
stances. Then we detect objects by matching the part tem-
plates on the testing images. In comparison, we simply re-
place the semantic parts with a set of random parts (not se-
mantically meaningful as shown in Fig. 8 (b)), while the
rest of the experiment settings are kept the same. A random
part is a continuous contour fragment, which starts from a
random location on the shape. The lengths of random parts
are comparable to those of semantic parts. We compare the
object detection rates on ETHZ dataset between the two sets
of parts.

We now describe the details of our part-based object de-
tection method. We first extract the edge map on a testing
image using the method introduced in [16]. The part tem-
plates are matched on the edges to vote for the object cen-
ters in the generalized Hough transform framework [2]. In
the voting space, objects are detected where the vote score
is above a threshold. In particular, we use shape descriptors
in [15] to measure similarities between edges and templates.
Beam search [10] is adopted to speed up the matching pro-
cess.

Table 3 summarizes the detection rates at 0.3 and 0.4
false positive per image (FPPI). We can see that the seman-
tic parts can boost the performance on all categories, which
demonstrates the representative power of the proposed se-
mantic parts. In addition, the improvement on the giraffe
and swan categories is over 15%. In these two categories,
articulation is significant, occurring at the necks and legs.
The semantic parts capture the anatomy structure and keep
rigid in articulation; however, the random parts may change
drastically. So the former is much more robust to handle
this situation.

3.3. Limitations and Discussions

Fig. 9 shows some decomposition results of shapes with
holes. Because the cup handle is a curved branch and can-
not be straightened by the preprocessing method, redundant
cuts are generated.

The last row of Fig. 10 shows a failure example of the
proposed method – although our method generates shorter
cut length than human and more similar parts, the decompo-
sition is not consistent with human perception. This failure
is due to the lack of object level semantic information. It
shows the limitation of shape decomposition only based on
generic perception rules.

(a) Semantic parts

(b) Random parts

Figure 8. Semantic parts and random parts. Parts are represented
by different colors.

Figure 9. Decomposition results of shapes with holes.

4. Conclusion
In this paper, we propose a method to decompose a shape

into semantic parts. Apart from three existing perception
rules, we propose a part-similarity rule to encourage consis-
tent cuts for similar parts. By jointly considering these per-
ception rules, we formulate the shape decomposition prob-
lem as a quadratically constrained quadratic program prob-
lem and solve it by a trust-region method. Extensive ex-
periments on the MPEG-7 shape dataset validates our ap-
proach is consistent with human perception. An object de-
tection experiment is also conducted on the ETHZ dataset
to demonstrate the advantage of the semantic parts over the
non-meaningful parts for shape representation.
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