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Abstract—We propose Multi-Task Learning with Low Rank Attribute Embedding (MTL-LORAE) to address the problem of person re-

identification on multi-cameras. Re-identifications on different cameras are considered as related tasks, which allows the shared

information among different tasks to be explored to improve the re-identification accuracy. The MTL-LORAE framework integrates low-

level features with mid-level attributes as the descriptions for persons. To improve the accuracy of such description, we introduce the

low-rank attribute embedding, which maps original binary attributes into a continuous space utilizing the correlative relationship

between each pair of attributes. In this way, inaccurate attributes are rectified and missing attributes are recovered. The resulting

objective function is constructed with an attribute embedding error and a quadratic loss concerning class labels. It is solved by an

alternating optimization strategy. The proposed MTL-LORAE is tested on four datasets and is validated to outperform the existing

methods with significant margins.

Index Terms—Multi-task learning, attribute, low rank, person re-identification

Ç

1 INTRODUCTION

PERSON re-identification aims to identify a query person
by searching for the most similar instances in a gallery

image or video set. Generally, the re-identification precision
rate can be improved by acquiring more information from a
larger amount of surveillance data. To ensure the recall rate,
it is highly necessary to devise effective algorithms to cope
with viewpoint variations, illumination conditions, and
camera parameter differences across images. This is because
that even for the same person appearing in various images,
the low-level visual features could be inconsistent and unre-
liable. Furthermore, in real-world re-identification, images
are often collected by a number of non-overlapping cameras
with different settings and viewpoints, making person re-
identification on multi-cameras a more challenging task.

Nonetheless, even though a person’s appearance can be
easily affected by many factors, his/her high-level semantic
concepts could remain comparatively consistent and stable
under different cameras. These semantic concepts, also
known as attributes, have been used in many vision tasks

like image classification and object detection, and have
demonstrated promising robustness. For a person appear-
ing in different cameras, his/her attributes are more stable
and consistent than low-level features. For instance, if a per-
son walking towards the camera has an attribute short hair,
there is a high probability that this short hair attribute still
could be detected even through this person turns his/her
back to the camera. In addition, attributes exhibit substan-
tial correlative relationships, i.e., some attributes tend to co-
appear while some never show up at the same time. For
example, female is more likely to be related with long hair
than with short hair. Also, long pants and short pants are not
likely to co-exist in one person.

By using attributes to describe an image, we can obtain a
vector, where each dimension indicates the existence or
absence (or the likelihood of existence) of the corresponding
attribute. We also find that the above mentioned inter-attri-
bute correlations could be utilized to map a person’s attrib-
utes under different cameras into a low rank space. In this
space, the original binary attributes can be represented by
more accurate and informative continuous values. Addi-
tionally, this mapping enables us to eliminate noisy attrib-
utes and recover missing attributes, thus resulting in more
accurate attributes. In order to take advantages of the inter-
attribute correlations, the commonly used strategies model
the relationships between camera pairs. However, it is unre-
alistic to do such modeling for large-scale data because of
the quadratic complexity with respect to the number cam-
eras. Therefore, most of conventional methods ignore the
relationships in the scenarios containing more than two
cameras, and thus show limited flexibility.

In Multi-Task Learning (MTL), multiple related tasks
benefit each other and are jointly optimized. Because of its
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promising performance in uncovering latent relationships
among tasks, MTL has been widely used in machine learn-
ing [1], [2] and computer vision [3], [4] tasks. Furthermore,
MTL is also suitable for handling scenarios where only a
small amount of training data is available for each task. In
multi-camera person re-identification, persons appear in
different cameras. In another word, different cameras share
the same set of persons. Person re-identification task also
easily suffers from the limited training data under each
individual camera. Inspired by this, we leverage the
MTL [5] to explore relationships between features and
attributes in cross-camera person re-identification. By con-
sidering re-identifications from multiple cameras as related
tasks, the MTL framework is well adapted to exploit fea-
tures and attributes shared across cameras.

Based on the above considerations, we propose the
Multi-Task Learning algorithm with LOw Rank Attribute
Embedding (MTL-LORAE) algorithm for person re-identifi-
cation. In our algorithm, we convert the person re-identifi-
cation problem into a classification problem. Specifically,
we use images from multiple cameras to learn a group of
person-specific classifiers. A vector made up by outputs of
these classifiers is created to represent each probe and gal-
lery image. For training on each specific person, given his/
her images from multiple cameras, we use MTL to learn a
discriminative model so that the inter-camera relationships
can serve to improve the learned model’s quality. Our MTL
objective function uses both attributes and low-level fea-
tures. The low rank attribute embedding is also included in
the objective function to discover relationships between
attribute pairs. In the embedded space, a person’s attributes
under different cameras become similar while attributes of
different people become more distinct from each other. The
embedded space also helps to rectify inaccurate attributes
and recover missing attributes. Its low rank structure allows
only a small amount of latent attributes to contribute to the
classification. An efficient alternating optimization method
is proposed to solve the MTL-LORAE objective function. In
this sense, our work is different from those algorithms per-
forming distance metric learning [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16]. Similar with representation learn-
ing algorithms [17], [18], [19], our goal is to acquire a more
robust and informative descriptor, by which we use simple
distance matching to do person re-identification.

We evaluate MTL-LORAE on four person re-identifica-
tion datasets and demonstrate that MTL-LORAE has
achieved satisfactory results. In [20], Su et al. has provided a
preliminary version of this work. In this paper, we add in-
depth theoretical discussions and more extensive experi-
ments and detailed discussions. Besides that, motivated by
the promising performance of deep learning in various
visual tasks, we test deep learning features with our frame-
work. New comparisons on four public datasets show deep
learning features further boost the performance of our
approach.

Our contributions can be summarized in the following
three aspects:

� By regarding re-identification under multiple cam-
eras as related tasks, we successfully exploit their
inter-relationships to learn more discriminative

classifiers for accurate person re-identification. To
the best of our knowledge, multi-task learning based
person re-identification is a rarely studied topic.

� We introduce low rank embedding into the MTL
framework. This integrates complementary features,
i.e., mid-level attributes and low-level visual features
into the re-identification framework. Moreover,
binary attributes are mapped into a continuous space
based on the inter-attribute correlations inferred
from the training data. This embedding process also
rectifies inaccurate attributes and recovers missing
attributes, resulting in more accurate attributes and
more discriminative classifiers.

� We present a novel objective function that jointly
learns task-specific classifiers and low rank attribute
embedding. Although the objective function is diffi-
cult to solve, we successfully propose an efficient
alternating optimization strategy with convergence
guarantee.

2 RELATED WORK

2.1 Person Re-Identification

Person re-identification is attracting more and more atten-
tions nowadays. There are several surveys [21], [22], [23] on
person re-identification. Traditional person re-identification
works can be classified into three categories: (a) retrieving
and encoding robust local features that represent a person’s
visual appearance; (b) learning a discriminative distance
metric to narrow down the distance between features of the
same person; (c) learning a new person representation,
which should be more robust and informative than the low-
level descriptor.

As for feature design, previous works design and use a
variety of customized features, including histogram features
from various color and texture channels [24], [25], symme-
try-driven accumulation of local features [26], features from
body parts with pictorial structures [27] to estimate human
body configuration, covariance descriptor based on bio-
inspired features [28] and space-time features from person
tracklets [16], etc. In order to integrate multiple features,
Gray et al. [24] select a subset of features by boosting for
matching pedestrian images. To enhance the descriptive
capability of multiple features, Liu et al. [29] fuse them by
learning person-specific weights.

With respect to distance measurement, some works mea-
sure the similarity between images from two cameras by
learning an optimized distance metric. Pairwise Con-
strained Component Analysis [7] and Relaxed Pairwise
Metric Learning [8] learn a projection from high-dimen-
sional input space to a low-dimensional space, where the
distance between pairs of data points meets the pre-defined
constraints. The Locally-Adaptive Decision Function in [14]
learns a locally adaptive thresholding rule and a distance
metric. The Probabilistic Relative Distance Comparison
model [15] seeks to increase the possibility of finding a true
match whose distance is smaller than a false match. In [11],
K€ostinger et al. propose a statistical inference perspective to
address the problem of metric learning. Kernel-based dis-
tance learning [12] is used to handle linearly non-separable
data. In [30], Li et al. present a deep learning framework to
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learn filter pairs that are responsible for encoding photomet-
ric transforms. Bai et al. [31] investigate person re-identifica-
tion task with manifold-based affinity learning and use an
unconventional manifold-preserving algorithm to improve
boost identification accuracy.

For representation learning, there are some works [17],
[18], [19], [32], [33], [34] which learn new robust descriptors
by model training. Matching images of faces from different
imaging modalities is an essential step for Heterogeneous
Face Recognition (HFR) [17]. For example, HFR matches a
sketch or an infrared image with a photo. In HFR frame-
work, probe and gallery images are both represented with
respect to their nonlinear similarities to a group of proto-
type face images. AN et al. [19] propose a reference-based
cross-camera person re-identification approach. During the
training process, a subspace is learned, where Regularized
Canonical Correlation Analysis (RCCA) is used to maximize
the relationships between reference images captured by
multiple cameras. Recently, Zhao et al. [32] propose to learn
mid-level filters, which are designed to address cross-view
invariance and use patch matching to infer the geometric
configurations of body parts. Xiao et al. [34] propose a
Domain Guided Dropout algorithm training on multiple
domains with Convolutional Neural Networks (CNNs) to
improve the deep feature learning procedure.

Similar to those algorithms, we train multiple person
classifiers integrating both low-level features and attribute
features to perform representation learning.

There are also approaches dedicated to person re-identi-
fication in large camera networks involving more than two
cameras [35], [36], [37], [38], [39], [40], [41].

2.2 Attributes

Attributes are semantic concepts of objects and can be either
learned from low-level features or manually defined. Previ-
ous works have studied the inter-attribute correlations in
order to improve the performance of zero/one-shot learning
for attribute-based classification [42], [43], [44], [45], [46], [47].
In person re-identification, attributes show promising perfor-
mance in preserving consistent representations of the same
person and identifying differences among different per-
sons [33], [48], [49], [50]. However, attributes are often used as
supplementary features for low-level features in previous
person re-identificationworks, which also do not consider the
correlations between attributes. Although several methods of
object classification have managed to model correlations
between attributes [51], [52], [53], as far as we know, no work
has utilized both low-level features and attribute correlations
across cameras for re-identification in a systematic manner.
Our algorithm integrates both attributes and low-level fea-
tures for training and acquire better attribute features through
low rank attribute embedding.

2.3 Multi-Task Learning

There are some representative works concerning Multi-Task
Learning, including clustered MTL [54], Robust MTL [55],
trace norm regularization [56], and [57]. The modeling of
information shared across tasks is often based on the
assumption of a shared low rank structure [58], [59]. Kernel
method has also been utilized to handle linearly non-sepa-
rable features [60], [61]. Dictionary learning [62] and tree

sparsity constraint [63] are also integrated with the standard
MTL framework. Chen et al. [64] apply MTL to concurrently
learn inter-attribute correlations and ranking functions for
image ranking. By regarding attribute classifiers as auxiliary
tasks for object classifiers, Hwang et al. [65] use MTL to
learn a shared structure for improved classification and
attribute prediction. Yang and Hospedales [57] provides a
two sided neural network framework, one for original fea-
ture and one for associated semantic descriptor that
addresses both multi-domain and multitask learning.

Both [64] and [65] assume attributes to be related tasks.
In [66], the multi-task support vector ranks individuals by
transferring information of matched or unmatched image
pairs from the source domain to the target domain. Ma et al.
[67] use multi-task learning to substitute multiple Mahalano-
bis distance metrics for the universal distance metric for all
cameras. It should be noted that our approach is different
from [66] in that, we directly model low-level features and
inter-attribute correlations shared across cameras without
using image pairs. Moreover, with respect to both attributes
and low-level features, we seek for a shared structure across
cameras, rather than learning a metric for each camera pair,
which can be computationally expensive for real applica-
tions. Although the framework of [68] has a similar low-
rank constraint with our work, it is not MTL based and
adopts a different optimization method due to the addi-
tional l1 and l2 constraints. Robust MTL [55] can only be
used to optimize W for MTL. Compared with the ones
in [68] and [55], our formulation is more challenging by
involving the optimization of bothW for MTL and low rank
matrix for attributes correlation. To address this formula-
tion, we have proposed an efficient alternating optimization
strategy with convergence guarantee.

3 METHODOLOGY

3.1 Problem Formulation

In this paper, learning a good representation for person re-
identification is formulated as a problem of classification by
learning a set of classifiers using images from multiple cam-
eras, with each classifier corresponds to a specific person.
Like [17], [18], [19], if the training set contains C persons,
we use the MTL-LORAE to train C classifiers and then for-
mulate each classifier learning as a regression problem.
Each probe and gallery image is represented by a vector
composed of outputs of these classifiers. Through the com-
putation of the distance between vectors of probe and gal-
lery images, we find and rank gallery images to perform
person re-identification. Details of this procedure will be
given in Section 3.5. For simplicity, no distinction is drawn
between cameras and tasks, and we will use two terms
interchangeably.

Given L learning tasks fT 1; T 2; . . . ; T Lg sharing the same
feature space, we want to use information of all tasks to
learn multi-class classifiers on a specific task. Typically, all
tasks in a multi-class setting share the same set of C classes
(persons). In a supervised one-versus-all manner, for the lth
task T l, we begin with binary classification by considering
images belonging to the cth class as positive samples and
regarding those belonging to the rest of the classes as nega-
tive samples, where there are totally nl labeled training
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samples. We follow the standard supervised learning proto-
col, where labels of all training images are available.

By learning multiple tasks simultaneously, our method
can perform effective task-to-task information transmission,
which is a useful function when only a limited amount of
training data from a task is available. For better clarity, we
omit the class index c from all notations in the following
text. For each training sample from the lth task T l, we have
a low level feature vector xli 2 Rd and a label yli 2 f�1; 1g,
where 1 indicates this sample is from the cth class and �1
otherwise. Additionally, there is a binary attribute vector
ali 2 f0; 1g

k for each sample, which may be semantic and
manually labeled or correspond to learned binary codes as
described in [69]. For each dimension of ali, 1 means that the
corresponding attribute is present and 0 otherwise. Then, a
predictor fl with respect to the task T l will be learned.

The discriminative and generalization ability of predic-
tors can be enhanced by exploiting the relationship amongst
tasks. Hence, information from task T i can be transmitted
to another task T j, where there may be only a limited num-
ber of training samples available. In this manner, the learn-
ing of the predictor fj will benefit from the learning on both
T i and T j simultaneously. This motivates the usage of MTL
to match images taken by different cameras. Furthermore,
the learned predictors can be improved if we integrate
attributes and find the correlations among them. The fol-
lowing sections introduce the low rank attribute embedding
(LORAE), complete MTL formulation, optimization algo-
rithm, and re-identification process.

3.2 Low Rank Attribute Embedding

A simple approach of combining low-level features and
attributes is to concatenate feature vectors and original attri-
bute vectors. However, considering the possible inconsis-
tency between human annotators and that it is difficult to
obtain exhaustive semantic concepts, attributes tend to be
inaccurate or incomplete in most cases. Actually, the
absence of an attribute for an instance does not necessarily
means that the instance does not have that attribute, which
is a fact that could be misinterpreted by the learning algo-
rithm. Similarly, the presence of a wrongly annotated attri-
bute may constitute noise. All this make it difficult for the
learned model based on the original attributes to accurately
describe the instance. As there are many attributes, they are
normally related to each other, meaning that some of them
often co-occur across different tasks. Consequently, from
the presence of one attribute, we can infer presence of its
closely related attributes, which is helpful in recovering
missing attributes. Likewise, some attributes are highly
mutually exclusive, so that they never occur simulta-
neously, which serves as a clue to remove noisy attributes.

Following [68], we learn a low rank attribute space to
embed the original binary attributes into continuous attrib-
utes using attribute dependencies. Specifically, in the low
rank space, there exists a transformationmatrixZ of each spe-
cific person, which is responsible for converting each of the
original attribute vector of one person (class) into a newvector
with continuous values. The transformation matrix should
capture correlations between attributes pairs since an attri-
bute can be affected by other attributes. The refined attributes
of one person are able to discover the correlations of related

attributes and preserve more accurate information to recog-
nize this person. Moreover, some attributes may show certain
local patterns. For example, there usually exists groups of
attributes like shorts and barelegs, which are strongly corre-
lated with each other, while being independent with the rest.
These local groups essentially imply a low-rank structure in
matrix Z. Therefore, Z should be a low-rank matrix to learn
the potential correlations among attributes.

Formally, given an attribute vector ali from task T l, the
linear embedding is parameterized as

fZðaliÞ ¼ Z>ali
s.t. rankðZÞ � r;

(1)

where ali and fZðaliÞ 2 Rk and Z 2 Rk�k. Although kernel
methods are applicable here, we choose to focus on linear
embeddings for easier learning. The rank constraint
imposed on Z guarantees that Z is low rank. It means there
exists a row Zi;: (or a column Z:;i) that is a linear combina-
tion of other rows (or columns). Therefore, the number of
parameters needed for a good embedding is smaller than
k� k. Hence, the computational complexity is decreased. In
this way, we obtain a refined attribute vector with continu-
ous values. It can precisely describes correlations between
attributes while recovering missing values and reducing
noises. Fig. 1 shows an intuitive illustration of the low rank
embedding, where missing values are successfully recov-
ered in the embedded continuous attributes.

3.3 Multi-Task Learning with Low Rank Attribute
Embedding

MTL is designed to learn multiple task-specific predictors
simultaneously by making use of the correlations among
tasks, so that the shared information can be transmitted from
one task to another. To obtain an accurate transformation
matrix Z for the purpose of attribute embedding, we propose
a unified MTL framework that can utilize inter-attribute cor-
relations across multiple tasks and train task-specific predic-
tors simultaneously. For the sake of simplicity, we assume a
linear classifier for each learning task T l to be represented by
a weight vector wl. For notational convenience, we concate-
nate the embedded attribute vector fZðaliÞwith xli to construct
a new vector exli ¼ ½xli;fZðaliÞ� 2 Rdþk. Therefore, we have
wl 2 Rdþk. In another word, while learning each person-
specific classifier, we also learn a person-specific linear

Fig. 1. Illustration of low rank attribute embedding with three attribute
vectors from task T 1 as examples. With the learned transformation
matrix, the original binary attributes are converted to continuous attrib-
utes. Semantically related attributes are recovered even though they are
absent in the original attribute vectors, i.e., the attribute female is non-
zero in the embedded attribute vector due to the presence of both skirt
and handbag, even though its value is 0 in the original attribute vector a13.
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projection of attributes as part of that classifiers feature space.
We define the loss function as ‘ðyli; ali;exli;ZÞ which can repre-
sent any smooth and convex function measuring the discrep-
ancy between groundtruth and predictions from learning.
The MTL-LORAE framework is shown in Fig. 2. We use a
label yli 2 f�1; 1g for classification with the goal of finding
better feature descriptors instead of just solving the classifica-
tion problem. In another word, we want to use the outputs of
trained classifiers as a feature vector. Consequently, the task
is formulated as a regression problem to learn feature vectors
conveying the classification confidence scores. Therefore, we
define the loss function as a regression problem, i.e.,

‘ðyli; ali;exli;ZÞ ¼ 1

2
ðjjyli �wl>exlijj2 þ gjjali � Z>alijj

2Þ: (2)

The first term jjyli �wl>exlijj2 is the quadratic loss caused by
applying the learned weight vector wl to the newly con-
structed sample exli. The second term jjali � Z>alijj

2 is the
attribute embedding error, which regularizes the difference
between original attributes and refined attributes obtained
from the linear embedding through Z. For the results pro-
duced by the embedding, their deviation from the original
attributes should be small. g controls the contributions of
the two terms.

We denote all the task-specific wl as a single weight
matrix W ¼ ½w1;w2; . . . ;wL� 2 RðdþkÞ�L. Since information
is shared among tasks and each task has a specific structure,
similar to [59], we assume thatW is composed of a low rank
matrix shared by all tasks and a task-specific sparse compo-
nent representing the incoherence caused by individual

tasks. Formally, W can be decomposed into a low rank
matrix R 2 RðdþkÞ�L and a sparse component S 2 RðdþkÞ�L.
Therefore, we have W ¼ Rþ S. Intuitively, non-zeros
entries in S indicate the task-specific incoherence between
the task and the shared low rank structure. The formulation
of MTL-LORAE is then given by

min
R;S;Z

XL
l¼1

Xnl
i¼1

‘ðyli; ali;exli;ZÞ þ �jjSjj0

s.t. W ¼ Rþ S; rankðRÞ � r1; rankðZÞ � r2;

(3)

where � is a trade-off parameter controlling the importance
of the regularization. r1 and r2 constrain the matrices R and
Z to be low rank. jjSjj0 is the ‘0-norm of S, which counts the
number of non-zero entries of S.

Solving Eq. (3) is NP-hard since it is non-convex and non-
smooth towing to the sparse regularization and low rank
constraints. It can be converted into a computationally solv-
able one through convex relaxation. First, since the ‘1-norm
is a convex envelop of ‘0-norm, jjSjj0 is replaced by jjSjj1,
which is the sum of all non-zero values. Second, the stan-
dard convex relaxation for the matrix rank is to use the
nuclear norm (trace norm) jj � jj� ¼

P
i si, which is the sum

of the singular values of a matrix. We then obtain

min
R;S;Z

XL
l¼1

Xnl
i¼1

‘ðyli; ali;exli;ZÞ þ �jjSjj1

s.t. W ¼ Rþ S; jjRjj� � r1; jjZjj� � r2;

(4)

which is our complete MTL-LOREA formulation. For the
convenience of notation, the value of the objective function
is denoted as F . By minimizing Eq. (4), the desired weight
matrixW and transformation matrix Z can be obtained.

3.4 Optimization

The optimization of Eq. (4) is difficult becauseW (i.e., R and
S) and Z are coupled together by exli. However, the problem
becomes solvable when we alternate between the tasks of
optimizing the objective function with respect to one vari-
able and fixing the other one. During the process of fixing Z,
jjali � Z>alijj

2 becomes a constant so it can be omitted. exli is
also constant with respect to wl, so that it can be regarded
as an ordinary training sample. By removing the nuclear
norm constraint on Z, Eq. (4) reduces to the standard MTL
formulation under the assumption of shared low rank struc-
ture plus incoherent sparse values

min
W

XL
l¼1

Xnl
i¼1

‘0ðyli;exliÞ þ �jjSjj1

s.t. W ¼ Rþ S; jjRjj� � r1;

(5)

where ‘0ðyli;exliÞ ¼ 1
2 jjyli �wl>exlijj2. Eq. (5) can be solved by

using the MixedNorm approach as described in detail in
[59]. Details can be found in [59].

In the process of fixingW, both R and S become constant,
so we can remove the constraints related to them. Therefore,
we obtain the objective function

min
Z

XL
l¼1

Xnl
i¼1

‘ðyli; ali;exli;ZÞ
s.t. jjZjj� � r2:

(6)

Fig. 2. Illustration of our MTL-LORAE framework.

SU ETAL.: MULTI-TASK LEARNINGWITH LOW RANK ATTRIBUTE EMBEDDING FOR MULTI-CAMERA PERSON RE-IDENTIFICATION 1171



After relaxing the constraint as a regularization term, we
obtain

min
Z

XL
l¼1

Xnl
i¼1

‘ðyli; ali;exli;ZÞ þ bjjZjj�: (7)

With the nuclear norm regularization, the optimal transfor-
mation matrix Z will not degenerate to a trivial solution,
i.e., an identity matrix I. However, in the presence of the
non-smooth nuclear constraint on Z, it is difficult to opti-
mize Eq. (7). For notational clarity, the loss function with
respect to Z is denoted as ‘Z, and the regularization term as
hZ ¼ jjZjj�. Eq. (7) is then rewritten as

min
Z

‘Z þ bhZ: (8)

‘Z is convex, differentiable and Lipschitz continuous. hZ is
convex but non-differentiable. Thus, Eq. (8) can be solved
by the proximal gradient method iteratively.

First, we represent the gradient of ‘Z with respect to Z as
@Z‘. According to the proximal gradient algorithm, at each
iteration step j, we then have Zj ¼ proxtjðZj�1 � tj@Zj�1‘Þ,
where tj > 0 is the step size and j is the iteration index.
proxtj is a proximal operator, defined as

arg min
Z

‘Zj�1 þ h@Zj�1‘;Z� Zj�1i

þ 1
2tj
jjZ� Zj�1jj2F þ bhZ;

(9)

where h�; �i is the inner product. Eq. (9) finds the Z that mini-
mizes the surrogate of the loss function ‘ at point Zj�1 plus a
quadratic proximal regularization term and the non-smooth
regularization term. Eq. (9) can be further simplified to

arg min
Z

1
2tj
jjZ� ðZj�1 � tj‘Zj�1Þjj

2
F þ bhZ: (10)

It is clear that Eq. (10) can be effectively solved by perform-
ing SVD on Zj�1 � tj‘Zj�1 and then soft-thresholding the sin-
gular values.

In practice, we use the Accelerated Gradient Method
(AGM) [56] to achieve faster optimization. AGM adaptively
estimates the step size and introduces the search point fZj

that is a linear combination of the latest two approximations

Zj�1 and Zj�2, eZj ¼ Zj�1 þ ð
aj�1�1

aj
ÞðZj�1 � Zj�2Þ. Here, aj�1

and aj control the combination weights of the previous two
approximations, which are also updated iteratively by

aj ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4a2

j�1
p

2 with a0 ¼ 1. The gradient in the jth iteration

is then performed on eZj instead of Zj, where eZ1 ¼ Z0.
The gradient @Z‘ is explicitly computed as

@Z‘ ¼ ðyli �wl>exliÞ @w
l>exli
@Z

þ g
@Z>ali
@Z
ðali � Z>aliÞ

>

¼ ðyli �wl>exliÞ @w
l>
f Z>ali
@Z

þ g
@Z>ali
@Z
ðali � Z>aliÞ

>

¼ ðyli �wl>exliÞaliwl>
f þ galiðali � Z>aliÞ

>

¼ ali½wl>
f ðyli �wl>exliÞ þ gðali � Z>aliÞ

>�;

(11)

where wl
f 2 Rk is part of the weight vector wl correspond-

ing to the embedded attribute fZðaliÞ. When the optimiza-
tion for Z converges, we update Z, fix it and minimize the
objective function for W. The optimization will stop once a

pre-defined iteration number P or once the difference
DF ¼ Fj�1 � Fj > 0 between consecutive values of the
objective function falls below a threshold. The detailed steps
of the optimization are shown in Algorithm 1.

Algorithm 1. Multi-Task Learning with Low Rank
Attribute Embedding (MTL-LORAE)

Input: training data samples fxli; ali; ylig for all L tasks, initial Z0

and W0, iteration number P and threshold th > 0 to control
iteration step.
Output: Learned Z andW.
Z Z0,W W0;
Evaluate objective function F0 using Z andW;
for j = 1 to P do

Optimize Eq. (5) when fixing Z byMixedNorm;
UpdateW Wj;
Optimize Eq. (6) when fixingW by AGM algorithm;
Update Z Zj;
Evaluate objective function Fj;
Calculate DF ¼ Fj�1 � Fj;
if DF < th
break;

end if
end for

3.5 Re-Identification Process

With C training classes (persons), we obtain C class-specific
weight matrices and transformation matrices, each of which
is denoted as WðcÞ ¼ ½w1

ðcÞ;w
2
ðcÞ; . . . ;w

L
ðcÞ� and ZðcÞ, respec-

tively, by performing the optimization with respect to each
class. Note that, since different persons may have different
sensitivities to attribute correlations, we trained a transfor-
mation matrix ZðcÞ for the cth specific person to enhance the
recognition of this specific person. Therefore, there are C
different transformation matrixes Z for re-identification
instead of one global transformation matrix. Given an image
taken by the l0th camera, l0 ¼ 1; 2; . . . ; L, which either
comes from the gallery or the probe set, we first extract
low level feature xl

0
and attribute vector al

0
. By utilizing

the transformation matrices, we convert our feature and
attribute vectors to a new set of vectors, denoted as

eXl0 ¼ ½exl0ð1Þ;exl0ð2Þ; . . . ;exl0ðCÞ� 2 RðdþkÞ�C , where the cth column

exl0ðcÞ ¼ ½xl0 ;Z>ðcÞal0 � is the concatenation of the feature vector
and the embedded attribute vector using the cth transfor-
mation matrix ZðcÞ. Furthermore, we select weight vectors
with respect to l0th task from C weight matrices, and multi-
ply them with the new vectors to obtain a score vector s as

s ¼
h
wl0>
ð1Þexl0ð1Þ;wl0>

ð2Þexl0ð2Þ; . . . ;wl0>
ðCÞexl0ðCÞ

i
; (12)

where wl0
ðcÞ is the column weight vector extracted from WðcÞ

corresponding to the l0th task T l0 trained for the cth class.
Therefore, each image is finally represented by a C-dimen-
sional score vector s. Then the Euclidean distance between
two score vectors is used to measure the similarity between
a gallery image and a probe image. It should be noted that
the classes in the training set can be either the same as or
different from those in the gallery and probe sets.

In multi-shot cases, a number of images are presented for
each probe/gallery identity. Given a probe image set
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containing mp images, the re-identification process ranks
the gallery image sets by aggregating image-level similari-
ties Therefore, the voting scheme below is used. First, we
calculate the distances between mp probe images and all
gallery images. Then, we use a Gaussian kernel to convert
the distances into similarities. In order to obtain a single
similarity between the probe and a gallery image set of mg

images, we sum up all mp �mg similarities and divide the
sum by the number of gallery images, mg, to discount the
effect of a gallery set including a large number of images.

4 EXPERIMENTS

4.1 Datasets

We evaluate our approach on four public datasets, iLIDS-
VID [16], PRID [70], VIPeR [71] and SAIVT-SoftBio [35]. The
iLIDS-VID dataset consists of 600 image sets of 300 persons
from two cameras at an airport. This dataset is designed for
multi-shot re-identification. Each person has two image sets
from the two cameras respectively, where each image set
contains 23 to 192 images, sampled from a short video taken
within a few seconds. The PRID dataset is used for single-
shot scenario. It contains images of different people from
two cameras A and B, under different illumination and
background conditions. There are 385 and 749 persons
appearing in cameras A and B, respectively, of which 200
appear in both cameras. The VIPeR dataset contains 632 per-
sons from two cameras, with only one image per person in
each camera. The SAIVT-SoftBio dataset is also designed for
multi-shot re-identification, where images are also extracted
from a short video containing a person. There are 152 per-
sons from eight different cameras. Since not every person
appears in all cameras, following the evaluation setting
in [38], we select those appearing in three cameras (i.e., cam-
eras #3, #5 and #8) as our evaluation set.

4.2 Implementation Details

We use a 2,784-dimensional color and texture descriptor [24]
as our low level feature, which is composed of 8 color chan-
nels (RGB, HSV and YCbCr1) and 19 texture channels
(Gabor and Schmid). As for attributes, using this descriptor
as x, we learn binary SVMs referring to [49] to predict the
same 20-bit attributes in [49] for PRID and 90-bit attributes
in [72] for VIPeR. For other datasets, we learn attribute func-
tions by [73] in an unsupervised manner on the training set

and generate 32-bit attributes with the descriptor as x. This
overall representation is generated by concatenating the fea-
ture x and the output of attribute classifiers.

Following the standard evaluation protocols, we ran-
domly select 150, 100 and 316 persons appearing in all cam-
eras as our training set for iLIDS-VID, PRID and VIPeR,
respectively. The remaining 150, 649 and 316 persons serve
as the test set (galleries and probes). All the results are aver-
aged over 10 random training/test splits. Parameters for
learning are empirically set via cross-validation and fixed for
all experiments. r1 ¼ 2, r2 ¼ 5 and � ¼ 0:3 in Eq. (3). g ¼ 0:5
in Eq. (2). Iteration number P ¼ 500 and threshold th ¼ 10�5

in Algorithm 1. If a classifier for a specific person is to be
trained in the experiment, all images of this person are used
as positive samples while images of other people are used as
negative samples. Consequently, the positive/negative data
ratio is highly imbalanced.We thus randomly select negative
samples for training according to a 1:4 positive/negative
ratio. Note that, this learning procedure is independent for
each person. Therefore, all the classes (persons) can be
trained in parallel.

4.3 Experimental Results

4.3.1 iLIDS-VID

Among 150 persons in the test set, images from one camera
are used as the probe set, while those from another camera
serve as the gallery set. We first compare our approach with
eight competing learning-based methods for multi-shot re-
identification: Salience Matching (Salmatch) [74], Learning
Mid-level Filters (LMF) [32], Multi-shot Symmetry-driven
Accumulation of Local Features (MS-SDALF) [26], Multi-shot
color with RankSVM (MS-color+RSVM) [16], Multi-shot
color&LBP with RankSVM (MS-color&LBP+RSVM) [16],
color&LBP with Dynamic Time Warping (Color&LBP
+DTW) [8], HoGHoF with DTW (HOGHOF+DTW) [75],
color&LBP with Discriminative Video fragments selection
and Ranking (MS-color&LBP+DVR) [16]. Note that, all of the
above methods are trained by person IDs with supervised
learning strategy. We use Cumulative Match Characteristic
(CMC) curves to evaluate performance, and show experimen-
tal results in Fig. 3 and Table 1.

Table 1 clearly shows that our MTL-LOREA approach
produces the best results consistently at different ranks.
When inspecting the matching rate at ranks 1 and 5, we find
a relatively large improvement compared to the MS-
color&LBP+DVR approach that achieves the best perfor-
mance among all the compared algorithms. Specifically, our

Fig. 3. CMC curves of our approach and state-of-the-art approaches on the iLIDS-VID dataset (left) and PRID dataset (right).

1. Only one of the luminance channels (V and Y) is used.
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method successfully improves the rank 1 accuracy from 34.5
to 43.0 percent, resulting in an 8.5 percent increase. In addi-
tion, we obtain nearly 100 percent matching rate at rank 50,
while most of the compared methods only achieve 80 per-
cent matching rate or even less at the same rank.

4.3.2 PRID

Following the protocol in [70], we use images of 100 persons
from camera A as the probe set, and 649 persons in camera
B as the gallery set, excluding all training samples. We com-
pare our algorithm with 11 supervised learning-based
methods: Relaxed Pairwise Metric Learning (RPML) [8],
Probabilistic Relative Distance Comparison (PRDC) [15],
RankSVM (RSVM) [76], Salmatch [74], LMF [32], Pairwise
Constrained Component Analysis (PCCA) [7], regularized
PCCA (rPCCA) [12], Keep It Simple and Straightforward
MEtric (KISSME) [11], kernel Local Fisher Discriminant
Classifier (kLFDA) [12], Marginal Fisher Analysis
(MFA) [12] and Kernel Canonical Correlation Analysis
(KCCA) [77]. Among these compared methods, PRDC,
PCCA, rPCCA, kLFDA and MFA use the same 2784-D low-
level feature as our work. Note that, we do not compare
with DVR [16] because DVR only uses 89 persons for test-
ing, which does not follow the same protocol used by the
aforementioned methods. We also use CMC curves to eval-
uate performance, as shown in Fig. 3 and Table 2.

The experimental results show that our MTL-LOREA
approach outperforms all existingmethods by a largemargin.
In particular, our approach achieves 50 percent matching rate
at rank 10, while the matching rates of compared approaches
are mostly less than 30 percent. Except for our approach and
KCCA, all other methods are only able to obtain a 50 percent
matching rate at rank 55. Our approach also consistently out-
performs KCCA, which shows the best performance at vari-
ous ranks among the compared algorithms. Specifically, our
absolute improvement of matching rate over KCCA is about
6 percent on average. The margin grows larger as we move
from lower ranks to higher ranks. In terms of the accuracy at
rank 1 and rank 5, our approach achieves a matching rate 18
percent at rank 1 and 37.4 percent at rank 5, respectively, lead-
ing to a 3.5 and 3.1 percent performance gain at ranks 1 and 5
over KCCA. When evaluated with more retrieved samples,
our approach still secures the best performance. It thus can be
seen that pairwise distance metric learning based on camera
pairs is clearly not as powerful as our approach. Although
using kernel tricks, without fully investigating the relation-
ships of features and attributes frommultiple cameras, KCCA

cannot improve the performance substantially. The experi-
ments further verify thatMTL-LOREA, which learns attribute
correlations in anMTL settingwith low rank embedding, suc-
cessfully exploits relationships among attributes, thus produ-
ces amore discriminativemodel.

Since all the competing methods only use low level fea-
tures while MTL-LOREA uses both low level features and
attributes, we conduct additional experiments on the PRID
dataset, where semantic attributes are provided, to verify
that the performance boost of MTL-LOREA results from
our learning framework rather than attributes only. We col-
lect publicly available implementations of five existing
approaches, which are Salmatch [74], LMF [32], rPCCA [12],
kLFDA [12] and MFA [12]. We concatenate the original
binary attribute vectors and low level features used by each
approach to form a set of new feature vectors, while keeping
other parts of each implementation unchanged. For fair
comparison, we use the default parameter settings provided
by original authors for each implementation. The compari-
sons are shown in Fig. 4 and Table 3.

With attribute added, all the five compared methods pro-
duce better results, justifying the use of attributes. Never-
theless, the performance of the five compared methods is
still worse than that of our MTL-LOREA approach. This
again verifies that our learning framework with MTL and
low rank attribute embedding is effective in utilizing shared
information amongst tasks, as well as exploiting attribute
correlations, to improve the re-identification accuracy.

TABLE 1
CMC Scores of Ranks from 1 to 50 on the iLIDS-VID Dataset

Rank 1 5 10 20 30 50

Salmatch [74] 8.0 24.8 35.4 52.9 61.3 74.8
LMF [32] 11.7 29.0 40.3 53.4 64.3 78.8
MS-SDALF [26] 5.1 19.0 27.1 37.9 47.5 62.4
MS-color+RSVM [16] 16.4 37.3 48.5 62.6 70.7 80.6
MS-color&LBP+RSVM [16] 20.0 44.0 52.7 68.0 78.7 84.7
Color&LBP+DTW [16] 9.3 21.6 29.5 43.0 49.1 61.0
HoGHoF+DTW [16] 5.3 16.0 29.7 44.7 53.1 66.7
MS-color&LBP+DVR [16] 34.5 56.4 67.0 77.4 84.0 91.7

MTL-LOREA 43.0 60.0 70.2 85.3 90.2 96.3

Numbers indicate the percentage (%) of correct matches within a specific rank.

TABLE 2
CMC Scores of Ranks from 1 to 50 on the PRID Dataset

Rank 1 5 10 20 30 50

RPML [8] 4.8 14.3 21.6 30.2 37.2 48.1
PRDC [15] 4.5 12.6 19.7 29.5 35.8 46.0
RSVM [76] 6.8 16.5 22.7 31.5 38.4 49.3
Salmatch [74] 4.9 17.5 26.1 33.9 40.5 47.8
LMF [32] 12.5 23.9 30.7 36.5 42.6 51.6
PCCA [7] 3.5 10.9 17.9 27.1 34.2 45.0
rPCCA [12] 3.8 12.3 18.3 27.5 35.2 45.4
KISSME [11] 4.1 12.8 21.1 31.8 40.7 52.5
kLFDA [12] 7.6 18.9 25.6 37.4 46.7 58.5
MFA [12] 7.2 18.7 27.6 39.1 47.4 58.7
KCCA [77] 14.5 34.3 46.7 59.1 67.2 75.4

MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

Numbers indicate the percentage (%) of correct matches within a specific rank.

Fig. 4. CMC curves of our approach and 5 state-of-the-art approaches
with attributes added on the PRID dataset.
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4.3.3 VIPeR

We apply data augmentation to generate more training
samples for MTL-LORAE. Specifically, for each training
image, we apply horizontal and vertical translation t 2 f�6;
�3; 0; 3; 6g pixels and clockwise rotation r 2 f�5; 0; 5g
degrees, resulting in totally 75 images per original training
image.

We compare MTL-LORAE with some recent supervised
learning-basedmethods, including KISSME [11], kLFDA [12],
KCCA [77], LOMO+XQDA [78], TSR [79], EPKFM [80]and
MLAPG [81], as shown in Table 4. OurMTL-LORAE achieves
the best accuracy at rank 1 and rank 5, outperforming existing
methods by a largemargin, and comparable results at rank 10
and rank 20.

4.3.4 SAIVT-SoftBio

We use half of the persons as the training set and the remain-
ing as the test set. In the test set, each image set serves as the
probe while all the remaining image sets are regarded as the
gallery. For fair comparison, we evaluate the performance
using precision, recall, and F1-score by regarding the identifi-
cation problem as a classification problem as [38] does. We do
not use the CMC score because it is not applicable to the sce-
nario with more than two cameras. We compare our algo-
rithm to RSVM [76], KISSME [11], RSVM with Conditional
Random Field (R-CRF) [38], and KISSME with Conditional
Random Field (K-CRF) [38]. All of these compared methods
use the same 2,784-D low-level feature as our work. Results

are averaged over all possible camera pairs of the three cam-
eras, and are presented in Table 5.

The table shows that our MTL-LOREA is able to achieve
the best F1-score, outperforming the best of existing
method, K-CRF, by 4.6 percent. In addition, MTL-LOREA
achieves the second best recall rate and comparable preci-
sion rate. We also note that our learning framework can
learn the models for all cameras simultaneously regardless
of the number of cameras, which is more computationally
efficient than existing methods that explicitly deal with all
pairs of cameras.

In addition to the above comparisons, we further show
comparisons of our approach and other competing methods
with respect to each pair of cameras separately in Table 6.
Compared with four competing methods, our MTL-LOREA
approach achieves better or comparable precision and
recall, and the best F1-score on all the camera pairs, showing
its outstanding capability of discovering and identifying a
person accurately.

4.4 Performance Using Deep Features

As deep learning has shown promising performance and
generalization ability in vision tasks, we also consider to
incorporate deep features into our MTL-LOREA algorithm
as another type of feature representation. In this experi-
ment, we use the output of VGG-16 network [82] pre-
trained on the ImageNet image classification task [83] as
deep features. The VGG-16 network includes 13 convolu-
tional layers, followed by three fully-connected layers.

To improve the performance of deep features, we fine-
tune the VGG-16 network using more than 40,000 samples

TABLE 3
CMC Scores of Our Approach and Five State-of-the-Art

Approaches with Attributes Added at Ranks
from 1 to 50 on the PRID Dataset

Rank 1 5 10 20 30 50

Salmatch [74] 4.9 17.5 26.1 33.9 40.5 47.8
Salmatch+Att 9.6 22.6 30.2 38.8 44.8 53.1
LMF [32] 12.5 23.9 30.7 36.5 42.6 51.6
LMF+Att 15.0 26.2 33.6 39.3 44.1 54.7
rPCCA [12] 3.8 12.3 18.3 27.5 35.2 45.4
rPCCA+Att 8.7 14.4 20.8 31.5 36.0 46.7
kLFDA [12] 7.6 18.9 25.6 37.4 46.7 58.5
kLFDA+Att 9.4 22.0 30.2 44.1 53.9 66.8
MFA [12] 7.2 18.7 27.6 39.1 47.4 58.7
MFA+Att 10.7 22.1 32.0 47.3 53.8 63.7

MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

Numbers indicate the percentage (%) of correct matches within a specific rank.
“Att” indicates attributes are added to the original features.

TABLE 4
CMC Scores of Ranks from 1 to 20 on the VIPeR Dataset

Rank 1 5 10 20

KISSME [11] 19.6 47.5 62.2 77.0
kLFDA [12] 32.2 65.8 79.7 90.9
KCCA [77] 37.3 71.4 84.6 92.3
LOMO + XQDA [78] 40.0 68.9 81.5 91.1
TSR [79] 31.6 68.6 82.8 94.6
EPKFM [80] 36.8 70.4 83.7 91.7
MLAPG [81] 40.7 69.9 82.3 92.4
MTL-LORAE 42.3 72.2 81.6 89.6

Numbers indicate the percentage (%) of correct matches within a specific rank.

TABLE 5
Comparison of Precision, Recall and F1-Score (in %) by Existing

Methods and Our Approach on SAIVT-SoftBio Dataset

RSVM [76] KISSME [11] R-CRF [38] K-CRF [38] MTL-LOREA

Precision 22.0 19.7 53.7 50.3 45.2

Recall 42.1 66.1 39.4 49.8 63.7

F1-score 26.2 29.5 42.0 48.3 52.9

TABLE 6
Comparison of Precision, Recall and F1-Score (in %)
Regarding All Camera Pairs by Existing Methods
and Our Approach on SAIVT-SoftBio Dataset

RSVM [76] KISSME [11] R-CRF [38] K-CRF [38] MTL-LOREA

C3-C5

Precision 14.9 15.9 37.2 38.0 38.1

Recall 24.7 50.3 15.5 28.5 75.1

F1-score 15.9 23.4 18.2 30.3 50.5

C3-C8

Precision 27.7 20.7 55.4 48.4 41.0

Recall 29.4 70.1 43.1 51.1 65.6

F1-score 20.1 31.0 43.4 47.6 50.4

C5-C8

Precision 25.7 19.9 45.2 47.1 36.8

Recall 43.4 65.4 30.8 44.7 53.8

F1-score 24.6 29.6 32.4 43.7 43.7

C3, C5 and C8 represent cameras #3, #5 and #8.
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of 152 persons, which are taken by cameras #1, #2, #4, #6 and
#7 on SAIVT-SoftBio dataset. The fine-tuning procedure is
conducted in a classification task, where the person IDs are
used as class labels. All parameters are the same as those
in [82]. A total of 40,000 iterations are performed. Then, we
use the fine-tuned VGG-16 model to extract features of
images from cameras #3, #5 and #8 of SAIVT-SoftBio dataset
and other datasets as our low-level features x. We select the
4,096-dim output of FC7 layer (the second fully-connected
layer) as the deep feature, and denote it as VGG-FC7.

We run our MTL-LOREA with deep features on the four
datasets. The results are summarized in Tables 7 and 8,
respectively. In the tables, VGG-FC7 means that we directly
use the output of FC7 layer in the VGG-16 network as feature
representation andmatch them using Euclidean distance.

We do not use the feature of the output layer, i.e., score
vector, because the score vector is more related with the
training data. As the training data and test data do not share
any overlap, the FC7 feature outperforms the score vector.
MTL-LOREA-VGG means that the features of the FC7 layer
are used as a substitution for low-level features in multi-
task learning under MTL-LOREA.

Table 7 shows the results on the iLIDS-VID dataset, PRID
dataset and VIPeR dataset, where the CMC scores of VGG-
FC7 at rank 1 are 24.1, 19.8 and 25.1 percent, respectively. This
means that deep features are not discriminative enough to
distinguish different persons without being fine-tuned on the
target datasets. On the other hand, the CMC scores of MTL-
LOREA-VGG at rank 1 are 56.4, 21.0 and 45.4 percent on the
three datasets, which are 13.4, 3.0 and 3.1 percent higher than
those of MTL-LOREA, respectively. It demonstrates that our
framework further boosts the person re-identification perfor-
mance by integrating with deep features. The above experi-
ments clearly verify that our MTL-LOREA framework is
effective in correctly matching images from the same person,
and is not dependent upon specific features.

Since VGG-16 is fine-tuned on SAIVT-SoftBio, it can be
seen from the Table 8 that VGG-FC7 has higher Precision,
Recall and F1-score than MTL-LOREA. This is reasonable
because deep features fine-tuned on the same dataset com-
monly perform better. However, the F1-score of MTL-
LOREA-VGG shows improvements of 5.8 percent on C3-
C5-C8, 7.9 percent on C3-C5, 1.8 percent on C3-C8, and 12.7
percent C5-C8, respectively, compared to the results of

VGG-FC7. Moreover, MTL-LOREA-VGG also produces sig-
nificantly higher F1-score than MTL-LOREA, i.e., about 15
percent improvement.

4.5 Discussion

In this section, we conduct more experiments to show the
characteristics and some interesting aspects of the proposed
methods.

4.5.1 Convergence Analysis

Our original formulation in Eq. (4) is difficult to optimize.
We solve this problem by alternatively optimizing the objec-
tive function with respect to one variable and fixing the
other one. When fixing Z, we obtain the Eq. (5), which can
be solved by MixedNorm approach in [59]. The optimization
algorithm of MixedNorm approach [59] guarantees the
global convergence with a convergence rate Oð1=k2Þ, where
k is the iteration number. On the other hand, when fixing
W, both the loss function ‘Z and regularization term hZ in
Eq. (8) are convex, so that a global optimal solution can be
acquired. By adopting the Accelerated Gradient Method
(AGM) in [56], we can achieve a convergence rate as
Oð1=k2Þ. Proofs of the convergence rate can be found in [56],
[59] and [84]. Therefore, our approach will find the global
optimal via alternating optimization.

To investigate the convergence rate of MTL-LOREA, we
show the values of objective function during the optimization
in Fig. 5. The optimization is conducted on the training sam-
ples of a person randomly selected from iLIDS-VID and
PRID. The figure shows that the objective function value
quickly decreases and reaches its minimal after a few itera-
tions, verifying the effectiveness of our optimization strategy.

4.5.2 Analysis on Transformation Matrix

Based on the assumption that attributes are correlated,
we propose to learn the low rank matrix Z to preserve

TABLE 7
CMC Scores of MTL-LOREA with Deep Features, i.e.,

Percentage (%) of Correct Matches, of Ranks 1, Rank 5,
Rank 10 and Rank 20 on the iLIDS-VID Dataset,

PRID Dataset and VIPeR Dataset

Methods Rank 1 Rank 5 Rank 10 Rank 20

iLIDS-VID VGG-FC7 24.1 43.6 52.8 65.6
MTL-LOREA 43.0 60.0 70.2 85.3

MTL-LOREA-FC7 56.4 69.0 78.4 87.4

PRID VGG-FC7 19.8 28.5 42.4 53.9
MTL-LOREA 18.0 37.4 50.1 66.6

MTL-LOREA-FC7 21.0 44.0 55.9 68.7

VIPeR VGG-FC7 25.1 39.8 48.5 60.6
MTL-LOREA 42.3 72.2 81.6 89.6

MTL-LOREA-FC7 45.4 76.6 85.3 91.7

TABLE 8
Comparison of Precision, Recall and F1-Score (in %) Regarding

All Camera Pairs by Our Approach with Deep Features
on SAIVT-SoftBio Dataset

VGG-FC7 MTL-LOREA MTL-LOREA-FC7

C3-C5-C8

Precision 54.4 45.2 57.5
Recall 69.0 63.7 79.5
F1-score 60.9 52.9 66.7

C3-C5

Precision 45.9 38.1 50.8
Recall 69.1 75.1 79.5
F1-score 54.8 50.5 62.7

C3-C8

Precision 57.9 41.0 55.9
Recall 73.0 65.6 81.9
F1-score 64.5 50.4 66.3

C5-C8

Precision 32.2 36.8 44.7
Recall 66.0 53.8 74.6
F1-score 43.2 43.7 55.9

C3, C5 and C8 represent cameras #3, #5 and #8.
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attribution correlations. In Figs. 6 and 7, we show some rep-
resentative examples of learned attribute relations by Z. In
these figures, the averaged correlation and mean absolute
error over all persons are shown on the PRID and VIPeR
datasets.

Because Z is trained for each specific person, the mean
absolute error in Figs. 6 and 7 essentially represents the vari-
ability in attribute-projection that is required to support a
good target person-classifier.

It can be seen from Figs. 6 and 7 that, the values of aver-
aged correlation are generally larger than the ones of mean
absolute error. It means that the learned correlations
between attributes stay relatively stable across different per-
sons. Meanwhile, the figures also demonstrate that different
persons do have different sensitivities to attribute correla-
tions. For example, the correlations between attributes like
darkhair and barelegs show large mean absolute error across
different persons. This means the correlation between dark-
hair and barelegs has diverse impact in identifying different
persons. Therefore, it is necessary to train the low rank
matrix Z for each person to encode the character of each per-
son. We use the trained matrix Z on each person rather than
a global Z also because such person-specific Z is easier to
optimize and could better avoid under-fitting.

It can be observed from Figs. 6 and 7 that, some attributes
are closely related and frequently co-occur in the same image.
They reasonably have higher averaged correlation scores,
e.g., the attributes shorts and barelegs. In contrast, a person can-
not wear light bottoms (or light shirt) and dark bottoms (or dark
shirt) at the same time. It is reasonable to observe that such
attributes have negative correlations. Attributes hairlong and
hairshort are also negatively correlated.

Similarly, the attribute carryingNothing has negative cor-
relations with both the attributes carryingMessengerBag and
carryingOther because a person is unlikely to carry different
bags simultaneously. Therefore, the learned attribute corre-
lations are reasonable. We thus use the learned correlations to
update the initial attributes to improve their accuracy.

Fig. 5. The values of objective function during optimization on the iLIDS-
VID dataset (top) and PRID dataset (bottom).

Fig. 6. Examples of attribute correlations learned on the PRID dataset.
The averaged correlation and mean absolute error across different per-
sons are shown in each example.

Fig. 7. Examples of attribute correlations learned on the VIPeR dataset.
The averaged correlation and mean absolute error across different per-
sons are shown in each example.
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4.5.3 Evaluation of Individual Components

To verify the effects of individual components in our
framework and show that each of them contributes to the
performance boost, we evaluate three variants of our
approach. Instead of using multi-task learning, we
assume tasks are independent and learn classifiers for
each task separately. The resulting classifiers are acquired
based on Single Tasks Learning (STL). In this way, STL
trains its classifiers under different cameras separately,
without sharing any data. We also use the original attrib-
utes without embedding. We thus have another variant
denoted as MTL-Att by discarding the embedding error
term in the objective function in Eq. (2). It means during
training and testing of MTL-Att, ex is set as ½x; a�. In addi-
tion, we remove the low rank constraint on Z in Eq. (4),
which embeds original attributes to a possible full rank
space by making attributes highly uncorrelated. We
denote this variant as MTL-FR. The three variants are
respectively evaluated on iLIDS-VID, PRID and VIPeR
datasets to see how each component affects the
performance.

We show CMC scores in Table 9. The results by STL are
always worse than those by MTL-LOREA and the other two
MTL-based variants. This indicates that learning related

tasks simultaneously successfully exploits shared informa-
tion amongst tasks and increases the discriminative ability
of the learned model.

We also find that MTL-FR is inferior to MTL-Att. This
suggests that assuming attributes are uncorrelated is unrea-
sonable and degrades the performance of original attributes.
However, only using the original attributes without investi-
gating their correlations, MTL-Att cannot produce the best
results. The experiments reveal that each of the above men-
tioned components is important in improving the perfor-
mance. By integrating all of them, our approach exhibits the
best performance.

4.5.4 Evaluation of Parameter Sensitivity

There are two important parameters in our formulation,
g in Eq. (2) which controls the contribution of attribute
embedding error term and � in Eq. (3) which controls
the importance of sparse regularization. To demonstrate
that our MTL-LOREA approach is not sensitive to these
parameters, we conduct experiments by changing the
parameters and evaluate the performance of MTL-
LOREA on three datasets. During our experiments, we
vary one parameter while keeping another one and all
the other parts fixed. Results are shown in Tables 10,
11, and 12.

Even though the parameters change within a relatively
large range, i.e., the maximal value is 20 times of the min-
imal value, the performance by MTL-LOREA only slightly
changes, i.e., the largest absolute change is no more than
7 percent. Actually, the absolute change is less than 3 per-
cent for most cases, which is negligible given the signifi-
cant improvement over existing approaches. The
experimental results clearly demonstrate that the pro-
posed MTL-LOREA is robust enough and not sensitive to
the above mentioned parameters. Therefore, our MTL-
LOREA approach does not rely on parameter tuning to
obtain outstanding performance, making it suitable for
practical applications.

TABLE 9
CMC Scores of Ranks from 1 to 50 on the iLIDS-VID,
PRID and VIPeR Datasets by STL, MTL-Att, MTL-FR

and the Complete MTL-LOREA

iLIDS-VID

Rank 1 5 10 20 30 50

STL 14.7 42.7 41.8 58.5 83.5 91.7
MTL-FR 37.7 54.0 47.4 64.9 85.3 92.5
MTL-Att 40.5 54.9 47.5 64.2 84.2 91.2
MTL-LOREA 43.0 60.0 70.2 85.3 90.2 96.3

PRID
Rank 1 5 10 20 30 50

STL 11.3 27.9 41.8 53.0 68.5 74.6
MTL-FR 11.3 34.1 47.4 61.1 69.8 79.0
MTL-Att 12.2 34.7 47.5 61.7 70.9 79.8
MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

VIPeR
Rank 1 5 10 20 30 50

STL 13.3 27.4 32.8 42.7 56.2 68.3
MTL-FR 35.3 63.3 75.6 83.8 89.9 94.4
MTL-Att 37.2 64.2 76.3 84.9 91.4 95.3
MTL-LOREA 42.3 72.2 81.6 89.6 93.1 97.4

Numbers indicate the percentage (%) of correct matches within a specific rank.

TABLE 10
CMC Scores at Ranks 1, 5 and 10 by MTL-LOREA with Varying

g (Importance of Attribute Embedding Error Term) and �
(Sparse Regularization) on iLIDS-VID Dataset

TABLE 11
CMC Scores at Ranks 1, 5 and 10 by MTL-LOREA with Varying

g (Importance of Attribute Embedding Error Term) and �
(Sparse Regularization) on PRID Dataset

TABLE 12
Precision (P), Recall (R) and F1-Score (in %) by MTL-LOREA
with Varying g (Importance of Attribute Embedding Error Term)

and � (Sparse Regularization) on SAIVT-SoftBio Dataset
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4.5.5 Weakness

Our approach performs fairly well in dealing with multi-
shot datasets, as shown from the experimental results, but
there still are several issues to address.

1) When the model is trained under single-shot sce-
nario, it must use data augmentation to generate
more training samples. For example, we need to
expand one image into 75 images through rotation
and translation on the VIPeR dataset.

2) When performing person re-identification, our
method uses person-specific classifiers. Therefore,
we need to train again for each additional person
added to the dataset, which takes more time.

3) It is difficult to encode shared information across
cameras for every person because there are few cam-
eras but many images of persons. In the future work,
we will consider two alternatives: (a) cameras are
treated independently, while all persons from a cam-
era share common characteristics; (b) information is
shared across both persons and cameras, which
could be a more effective solution.

4) Attributes provide auxiliary information apart from
low-level features. However, it is usually expensive
and impractical to obtain attributes from manual
annotations. Even though data driven attribute can
be learned, it still requires additional training and
annotation efforts. Therefore, it is hard to perform
person re-identification tasks with limited training
data. Our future work will also work on one-shot
attribute learning algorithm to address this problem.
We will also combine better features to further
improve the performance of our method.

5) Due to its powerful feature learning ability, deep
model has shown promising performance on person
Re-ID. Previous work [57] has implement a two-side
neural network for multi-task and multi-domain
learning. It is possible to propose a deep neural net-
work structure that implements multi-task learning
and attribute embedding. This will be explored in
our future work.

5 CONCLUSION

Wehaveproposed amulti-task learning formulationwith low
rank attribute embedding for person re-identification. Multi-
ple cameras are treated as related tasks, whose relationships
are decomposed as a low rank structure shared by all tasks
and task-specific sparse components for individual tasks by
MTL. Both low level features and semantic/data-driven
attributes are used. We have further proposed a low rank
attribute embedding that learns attributes correlations to con-
vert original binary attributes to continuous attributes, where
incorrect and incomplete attributes are rectified and recov-
ered. Our objective function can be effectively solved by an
alternating optimization under proper relaxation. Experi-
ments on four datasets have demonstrated the outstanding
performance and robustness of the proposed approach.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation of China 61572050, 91538111, 61620106009, 61429201,

and the National 1000 Youth Talents Plan, in part to Dr. Qi
Tian by ARO grant W911NF-15-1-0290 and Faculty Research
Gift Awards by NEC Laboratories of America and Blippar.
Chi Su and Fan Yang contributed equally to this work.

REFERENCES

[1] R. K. Ando and T. Zhang, “A framework for learning predictive
structures from multiple tasks and unlabeled data,” J. Mach. Learn.
Res., vol. 6, pp. 1817–1853, 2005.

[2] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, “Multi-task learn-
ing for classification with Dirichlet process priors,” J. Mach. Learn.
Res., vol. 8, pp. 35–63, 2007.

[3] X. Yuan, X. Liu, and S. Yan, “Visual classification with multitask
joint sparse representation,” IEEE Trans. Image Process., vol. 21,
no. 10, pp. 4349–4360, Oct. 2012.

[4] M. Lapin, B. Schiele, and M. Hein, “Scalable multitask representa-
tion learning for scene classification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2014, pp. 1434–1441.

[5] R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias,” in Proc. 10th Int. Conf.Mach. Learn., 1993, pp. 41–48.

[6] A. J. Ma, P. C. Yuen, and J. Li, “Domain transfer support vector
ranking for person re-identification without target camera label
information,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3567–
3574.

[7] M. Dikmen, E. Akbas, T. S. Huang, and N. Ahuja, “Pedestrian rec-
ognition with a learned metric,” in Proc. 10th Asian Conf. Comput.
Vis., 2011, pp. 501–512.

[8] M. Hirzer, P. M. Roth, M. K€ostinger, and H. Bischof, “Relaxed
pairwise learned metric for person re-identification,” in Proc. 12th
Eur. Conf. Comput. Vis., 2012, pp. 780–793.

[9] S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, “Local
Fisher discriminant analysis for pedestrian re-identification,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3318–
3325.

[10] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimension-
ality reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no.
1, pp. 40–51, Jan. 2007.

[11] M. K€ostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof,
“Large scale metric learning from equivalence constraints,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2012, pp. 2288–2295.

[12] F. Xiong, M. Gou, O. Camps, and M. Sznaier, “Person re-identifi-
cation using kernel-based metric learning methods,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 1–16.

[13] C. Liu, C. C. Loy, S. Gong, and G. Wang, “POP: Person re-identifi-
cation post-rank optimisation,” in Proc. IEEE Int. Conf. Comput.
Vis., 2013, pp. 441–448.

[14] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith,
“Learning locally-adaptive decision functions for person ver-
ification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013,
pp. 3610–3617.

[15] W.-S. Zheng, S. Gong, and T. Xiang, “Re-identification by relative
distance comparison,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 3, pp. 653–668, Mar. 2013.

[16] T. Wang, S. Gong, X. Zhu, and S. Wang, “Person re-identification by
video ranking,” inProc. Eur. Conf. Comput. Vis., 2014, pp. 688–703.

[17] B. F. Klare and A. K. Jain, “Heterogeneous face recognition using
kernel prototype similarities,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 6, pp. 1410–1422, Jun. 2013.

[18] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar,
“Attribute and simile classifiers for face verification,” in Proc. 12th
IEEE Int. Conf. Comput. Vis., 2009, pp. 365–372.

[19] L. An, M. Kafai, S. Yang, and B. Bhanu, “Reference-based person
re-identification,” in Proc. 10th IEEE Int. Conf. Adv. Video Signal
Based Surveillance, 2013, pp. 244–249.

[20] C. Su, F. Yang, S. Zhang, Q. Tian, L. S. Davis, and W. Gao, “Multi-
task learning with low rank attribute embedding for person re-
identification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 3739–3747.

[21] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and
trends in person re-identification,” Image Vis. Comput., vol. 32,
no. 4, pp. 270–286, 2014.

[22] R. Vezzani, D. Baltieri, and R. Cucchiara, “People reidentification
in surveillance and forensics: A survey,” ACM Comput. Surveys,
vol. 46, no. 2, 2013, Art. no. 29.

SU ETAL.: MULTI-TASK LEARNINGWITH LOW RANK ATTRIBUTE EMBEDDING FOR MULTI-CAMERA PERSON RE-IDENTIFICATION 1179



[23] G. Doretto, T. Sebastian, P. Tu, and J. Rittscher, “Appearance-
based person reidentification in camera networks: Problem
overview and current approaches,” J. Ambient Intell. Humanized
Comput., vol. 2, no. 2, pp. 127–151, 2011.

[24] D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition
with an ensemble of localized features,” in Proc. 10th Eur. Conf.
Comput. Vis., 2008, pp. 262–275.

[25] L. Zheng, L. Sheng, L. Tian, S. Wang, J. Wang, and Q. Tian,
“Scalable person re-identification: A benchmark,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 1116–1124.

[26] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of
local features,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., 2010, pp. 2360–2367.

[27] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino,
“Custom pictorial structures for re-identification,” in Proc. British
Mach. Vis. Conf., 2011, pp. 68.1–68.11.

[28] B. Ma, Y. Su, and F. Jurie, “Covariance descriptor based on bio-
inspired features for person re-identification and face ver-
ification,” Image Vis. Comput., vol. 32, no. 6, pp. 379–390, 2014.

[29] C. Liu, S. Gong, C. C. Loy, and X. Lin, “Person re-identification:
What features are important?” in Proc. Eur. Conf. Comput. Vis.,
2012, pp. 391–401.

[30] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pair-
ing neural network for person re-identification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 152–159.

[31] B. Song, B. Xiang, and Q. Tian, “Scalable person re-identification
on supervised smoothed manifold,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017.

[32] R. Zhao, W. Ouyang, and X. Wang, “Learning midlevel filters for
person reidentification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2014, pp. 144–151.

[33] R. Layne, T. M. Hospedales, S. Gong, and Q. Mary, “Person re-
identification by attributes,” in Proc. British Mach. Vis. Conf., 2012,
pp. 24.1–24.11.

[34] T. Xiao, H. Li, W. Ouyang, and X. Wang, “Learning deep feature
representations with domain guided dropout for person re-identi-
fication,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 1249–1258.

[35] A. Bialkowski, S. Denman, P. Lucey, S. Sridharan, and C. B.
Fookes, “A database for person re-identification in multi-camera
surveillance networks,” in Proc. Int. Conf. Digit. Image Comput.
Techn. Appl., 2012, pp. 1–8.

[36] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D people data-
set for surveillance and forensics,” in Proc. Joint ACM Workshop
Human Gesture Behavior Understanding, 2011, pp. 59–64.

[37] A. Das, A. Chakraborty, and A. K. Roy-Chowdhury, “Consistent
re-identification in a camera network,” in Proc. Eur. Conf. Comput.
Vis., 2014, pp. 330–345.

[38] B. Cancela, T. M. Hospedales, and S. Gong, “Open-world person
re-identification by multi-label assignment inference,” in Proc.
British Mach. Vis. Conf., 2014.

[39] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian,
“Scalable person re-identification: A benchmark,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 1116–1124.

[40] L. Zheng, et al., “MARS: A video benchmark for large-scale person
re-identification,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 868–884.

[41] L. Zheng, H. Zhang, S. Sun, M. Chandraker, and Q. Tian, “Person
re-identification in the wild,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017.

[42] G. Wang and D. A. Forsyth, “Joint learning of visual attributes,
object classes and visual saliency,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., 2009, pp. 537–544.

[43] Y. Wang and G. Mori, “A discriminative latent model of object
classes and attributes,” in Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 155–168.

[44] X. Yu and Y. Aloimonos, “Attribute-based transfer learning for
object categorization with zero/one training example,” in Proc.
11th Eur. Conf. Comput. Vis., 2010, pp. 127–140.

[45] D. K. Mahajan, S. Sellamanickam, and V. Nair, “A joint learning
framework for attribute models and object descriptions,” in Proc.
IEEE Int. Conf. Comput. Vis., 2011, pp. 1227–1234.

[46] T. Mensink, J. J. Verbeek, and G. Csurka, “Tree-structured CRF
models for interactive image labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 2, pp. 476–489, Feb. 2013.

[47] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-
embedding for attribute-based classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2013, pp. 819–826.

[48] R. Layne, T. M. Hospedales, and S. Gong, “Towards person identi-
fication and re-identification with attributes,” in Proc. 12th Eur.
Conf. Comput. Vis., 2012, pp. 402–412.

[49] R. Layne, T. M. Hospedales, and S. Gong, “Attributes-based re-
identification,” in Person Re-Identification. Berlin, Germany:
Springer, 2014, pp. 93–117.

[50] R. Layne, T. M. Hospedales, and S. Gong, “Re-id: Hunting attrib-
utes in the wild,” in Proc. British Mach. Vis. Conf., 2014.

[51] S.-J. Huang, Z.-H. Zhou, and Z. Zhou, “Multi-label learning by
exploiting label correlations locally,” in Proc. 26th AAAI Conf.
Artif. Intell., 2012, pp. 949–955.

[52] J. Petterson and T. S. Caetano, “Submodular multi-label learning,”
in Proc. 24th Int. Conf. Neural Inf. Process. Syst., 2011, pp. 1512–
1520.

[53] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2010, pp. 999–1008.

[54] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via
alternating structure optimization,” in Proc. 24th Int. Conf. Neural
Inf. Process. Syst., 2011, pp. 702–710.

[55] P. Gong, J. Ye, and C. Zhang, “Robust multi-task feature
learning,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2012, pp. 895–903.

[56] S. Ji and J. Ye, “An accelerated gradient method for trace norm
minimization,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009,
pp. 457–464.

[57] Y. Yang and T. M. Hospedales, “A unified perspective on multi-
domain and multi-task learning,” in Proc. Int. Conf. Learn. Repre-
sentations, 2015.

[58] J. Chen, L. Tang, J. Liu, and J. Ye, “A convex formulation for learn-
ing shared structures from multiple tasks,” in Proc. 26th Annu. Int.
Conf. Mach. Learn., 2009, pp. 137–144.

[59] J. Chen, J. Liu, and J. Ye, “Learning incoherent sparse and low-
rank patterns from multiple tasks,” in Proc. 16th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 1179–1187.

[60] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple
tasks with kernel methods,” J. Mach. Learn. Res., vol. 6, pp. 615–
637, 2005.

[61] Q. Gu, Z. Li, and J. Han, “Learning a kernel for multi-task
clustering,” in Proc. 25th AAAI Conf. Artif. Intell., 2011, pp. 368–
373.

[62] P. Ruvolo and E. Eaton, “Online multi-task learning via sparse
dictionary optimization,” in Proc. 28th AAAI Conf. Artif. Intell.,
2014, pp. 2062–2068.

[63] L. Han, Y. Zhang, G. Song, and K. Xie, “Encoding tree sparsity in
multi-task learning: A probabilistic framework,” in Proc. 28th
AAAI Conf. Artif. Intell., 2014, pp. 1854–1860.

[64] L. Chen, Q. Zhang, and B. Li, “Predicting multiple attributes via
relative multi-task learning,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2014, pp. 1027–1034.

[65] S. J. Hwang, F. Sha, and K. Grauman, “Sharing features between
objects and their attributes,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2011, pp. 1761–1768.

[66] A. J. Ma, P. C. Yuen, and J. Li, “Domain transfer support vector
ranking for person re-identification without target camera label
information,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3567–
3574.

[67] L. Ma, X. Yang, and D. Tao, “Person re-identification over camera
networks using multi-task distance metric learning,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3656–3670, Aug. 2014.

[68] L. Xu, Z. Wang, Z. Shen, Y. Wang, and E. Chen, “Learning low-
rank label correlations for multi-label classification with missing
labels,” in Proc. IEEE Int. Conf. Data Mining, 2014, pp. 1067–1072.

[69] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst.,
2009, pp. 1042–1050.

[70] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “Person re-
identification by descriptive and discriminative classification,” in
Image Analysis. Berlin, Germany: Springer, 2011, pp. 91–102.

[71] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models
for recognition, reacquisition, and tracking,” in Proc. IEEE Int.
Workshop Performance Eval. Tracking Surveillance, vol. 3, no. 5, 2007.

[72] Y. Deng, P. Luo, C. C. Loy, and X. Tang, “Pedestrian attribute rec-
ognition at far distance,” in Proc. 22nd ACM Int. Conf. Multimedia,
2014, pp. 789–792.

[73] M. Rastegari, A. Farhadi, and D. Forsyth, “Attribute discovery via
predictable discriminative binary codes,” in Proc. 12th Eur. Conf.
Comput. Vis., 2012, pp. 876–889.

1180 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 5, MAY 2018



[74] R. Zhao, W. Ouyang, and X. Wang, “Person re-identification by
salience matching,” in Proc. IEEE Int. Conf. Comput. Vis., 2013,
pp. 2528–2535.

[75] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008, pp. 1–8.

[76] B. Prosser, W.-S. Zheng, S. Gong, T. Xiang, and Q. Mary, “Person
re-identification by support vector ranking,” in Proc. British Mach.
Vis. Conf., 2010.

[77] G. Lisanti, I. Masi, and A. Del Bimbo, “Matching people across
camera views using kernel canonical correlation analysis,” in
Proc. Int. Conf. Distrib. Smart Cameras, 2014, Art. no. 10.

[78] S. Liao, Y. Hu, X. Zhu, and S. Z. Li, “Person re-identification by
local maximal occurrence representation and metric learning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2197–
2206.

[79] Z. Shi, T. M. Hospedales, and T. Xiang, “Transferring a semantic
representation for person re-identification and search,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4184–4193.

[80] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, “Similarity
learning on an explicit polynomial kernel feature map for person
re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2015, pp. 1565–1573.

[81] S. Liao and S. Z. Li, “Efficient PSD constrained asymmetric metric
learning for person re-identification,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2015, pp. 3685–3693.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

[83] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[84] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci.,
vol. 2, no. 1, pp. 183–202, 2009.

Chi Su is working toward the PhD degree in the
Institute of Digital Media, EECS, Peking Univer-
sity. His research include computer vision and
machine learning, with focus on object detection,
object tracking, and human identification and rec-
ognition. He is a student member of the IEEE.

Fan Yang (M’10) received the PhD degree in
computer science from theUniversity of Maryland,
College Park, Maryland, in 2016, where he was
also affiliated with the University of Maryland Insti-
tute for Advanced Computer Studies (UMIACS).
His broad interests include computer vision and
machine learning, such as visual search, object
tracking and detection, face recognition, person
re-identification and deep learning. He has more
than 20 publications in premier conferences and
journals. He is a member of the IEEE.

Shiliang Zhang received the PhD degree in
computer science from the Institute of Computing
Technology, Chinese Academy of Sciences, in
2012. He is currently an assistant professor in the
School of Electronic Engineering and Computer
Science, Peking University. He was a postdoc-
toral scientist in NEC Labs America and a post-
doctoral research fellow with the University of
Texas at San Antonio. His research interests
include large-scale image retrieval, person re-
identification, and computer vision for autono-

mous driving. He was awarded the National 1000 Youth Talents Plan of
China, Outstanding Doctoral Dissertation Awards from both Chinese
Academy of Sciences and Chinese Computer Federation (CCF), Presi-
dent Scholarship by Chinese Academy of Sciences, NEC Laboratories
America Spot Recognition Award, and the Microsoft Research Fellow-
ship. He is the recipient of Top 10 percent Paper Award in IEEE MMSP
2011. He is a member of the IEEE.

Qi Tian received the PhD degree in ECE from the
University of Illinois at Urbana-Champaign
(UIUC), in 2002. He is currently a professor in the
Department of Computer Science, University of
Texas at San Antonio (UTSA). He was a tenured
associate professor from 2008-2012 and a ten-
ure-track assistant professor from 2002-2008.
His research interests include multimedia infor-
mation retrieval, computer vision, pattern recog-
nition, and bioinformatics and published more
than 350 refereed journal and conference papers.

He received the Best Paper Awards in ACM ICMR 2015, PCM 2013,
MMM 2013, and ACM ICIMCS 2012, a Top 10 percent Paper Award in
MMSP 2011, a Student Contest Paper Award in ICASSP 2006. His
research projects are funded by ARO, NSF, DHS, Google, FXPAL, NEC,
Blippar, SALSI, Akiira Media Systems, and UTSA, etc. He received 2010
ACM Service Award and 2016 UTSA Innovation Award in the first cate-
gory and 2014 Research Achievement Award from College of Science,
UTSA. He is an associate editor of the IEEE Transactions on Multime-
dia, the IEEE Transactions on Circuits and Systems for Video Technol-
ogy, the ACM Transactions on Multimedia Computing, Communications
and Application, the Multimedia System Journal, and in the editorial
board of the Journal of Multimedia and the Journal of Machine Vision
and Applications. He is a fellow of the IEEE.

Larry Steven Davis received the BA degree from
Colgate University, in 1970 and the MS and PhD
degrees in computer science from the University
of Maryland, in 1974 and 1976, respectively.
From 1977 to 1981, he was an assistant profes-
sor in the Department of Computer Science, Uni-
versity of Texas, Austin. He returned to the
University of Maryland as an associate professor,
in 1981. From 1985 to 1994, he was the director
of the University of Maryland Institute for
Advanced Computer Studies. From 1999 to

2012, he was the chair of the Computer Science Department in the insti-
tute. He is currently a professor in the institute and in the Computer Sci-
ence Department. He is a fellow of the ACM, the IEEE, and the IAPR.

Wen Gao received the PhD degree in electronics
engineering from the University of Tokyo, Tokyo,
Japan, in 1991. He was a professor of computer
science in the Harbin Institute of Technology, Har-
bin, China, from 1991 to 1995, and a professor in
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. He is cur-
rently a professor of computer science with
Peking University, Beijing. He has authored
extensively, including five books and more than
600 technical articles in refereed journals and

conference proceedings in image processing, video coding and commu-
nication, pattern recognition, multimedia information retrieval, multi-
modal interface, and bioinformatics. He served or serves on the editorial
board for several journals, such as the IEEE Transactions on Circuits
and Systems for Video Technology, the IEEE Transactions on Multime-
dia, the IEEE Transactions on Image Processing, the IEEE Transactions
on Autonomous Mental Development, the EURASIP Journal of Image
Communications, and the Journal of Visual Communication and Image
Representation. He chaired a number of prestigious international confer-
ences on multimedia and video signal processing, such as the IEEE
International Conference on Multimedia & Expo and ACM Multimedia,
and also served on the advisory and technical committees of numerous
professional organizations. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SU ETAL.: MULTI-TASK LEARNINGWITH LOW RANK ATTRIBUTE EMBEDDING FOR MULTI-CAMERA PERSON RE-IDENTIFICATION 1181



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


