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Abstract
We present a novel approach called Minimal Re-
construction Bias Hashing (MRH) to learn sim-
ilarity preserving binary codes that jointly opti-
mize both projection and quantization stages. Our
work tackles an important problem of how to ele-
gantly connect optimizing projection with optimiz-
ing quantization, and to maximize the complemen-
tary effects of two stages. Distinct from previous
works, MRH can adaptively adjust the projection
dimensionality to balance the information loss be-
tween projection and quantization. It is formulated
as a problem of minimizing reconstruction bias of
compressed signals. Extensive experiment results
have shown the proposed MRH significantly out-
performs a variety of state-of-the-art methods over
several widely used benchmarks.

1 Introduction
Approximate nearest neighbour (ANN) search [Gionis et al.,
1999a] plays an important role in machine learning, com-
puter vision and information retrieval. Using similarity pre-
serving binary codes to represent original data points is
of particular interest for ANN search [Weiss et al., 2008;
Norouzi and Fleet, 2011]. The binary codes can bring about
low memory cost as well as fast similarity distance computing
speed. This is particular useful when dealing with large scale
database [Torralba et al., 2008; Gong and Lazebnik, 2011;
Weiss et al., 2008; Duan et al., 2016].

A common binary coding approach, often called Hash-
ing, is to develop similarity preserving hashing functions for
mapping data points into a Hamming space. As it is NP-
hard to directly learn the optimal binary codes [Weiss et
al., 2008], hashing methods typically work on a two-stage
strategy: projection and quantization [Kong and L, 2012;
Kong et al., 2012]. Specifically, given a data point x 2 Rd,
they first project x into a low dimensional vector

y = [f1(x), f2(x), ..., fk(x)] 2 Rk,

where real-valued functions {fi(·)}ki=1 are called projection
functions. Then they utilize Single Bit Quantization (SBQ)
to quantize each projection element fi(x) into a single bit by
thresholding [Kong and L, 2012; Wang et al., 2016].

Lots of research efforts have been devoted to the first stage,
with an aim to learn powerful projections to maintain the sim-
ilarity structure of the original data points. Local Sensitive
Hashing (LSH) [Andoni and Indyk, 2006] adopts a random
projection which is independent of training data. Similarly,
Shift Invariant Kernel Hashing (SIKH) [Raginsky and Lazeb-
nik, 2009] chooses random projection and applies shifted co-
sine function to generate binary codes. Both LSH and SIKH
are data independent and flexible since they do not rely on
any training data. However, long codes are often required to
achieve satisfactory performance [Gong and Lazebnik, 2011;
Raginsky and Lazebnik, 2009].

To build up more effective projection, many promising
data dependent methods have been proposed. Through learn-
ing the projection functions over training data, data depen-
dent methods usually outperform data independent methods
at relatively shorter codes [Liu et al., 2010]. Representa-
tive methods include Spectral Hashing [Weiss et al., 2008],
Binary Reconstructive Embedding Hashing [Kulis and Dar-
rell, 2009], Semi-Supervised Hashing [Wang et al., 2010],
Anchor Graph Hashing [Liu et al., 2010], Iterative Quan-
tization [Gong and Lazebnik, 2011], Minimal Loss Hash-
ing [Norouzi and Fleet, 2011], Kernal Supervised Hash-
ing [Liu et al., 2012], Isotropic Hashing [Kong and Li, 2012],
K-means Hashing [He et al., 2013], Inductive Hashing on
Manifolds [Shen et al., 2013], Harmonious Hashing [Xu et
al., 2013], Discrete Graph Hashing [Liu et al., 2014], Sparse
Projection Hashing [Xia et al., 2015], etc.

Moreover, recent works have reported the impact of quan-
tization on Hashing performance. Single Bit Quantization
(SBQ) in most hashing methods incurs lots of quantization er-
rors, which would seriously degrade the performance [Kong
and L, 2012; Kong et al., 2012]. Thus, promising Multi-
ple Bits Quantization (MBQ) methods have been proposed.
Double Bits Quantization [Kong and L, 2012] divides each
projection dimension into three regions and uses double bits
code to represent each element region. Manhattan Quan-
tization [Kong et al., 2012] proposes natural binary code
(NBC) and adopts Manhattan distance to compute the dis-
tance between NBC codes. Hamming Compatible Quanti-
zation [Wang et al., 2015] aims to minimize the distance
error function to preserve the capability of similarity met-
ric between Euclidean space and Hamming space. Over-
all, MBQ methods do facilitate the reduction of information
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loss in quantization. Experiment results have demonstrated
the functionality of high quality quantization in improving
Hashing performance [Kong and L, 2012; Kong et al., 2012;
Wang et al., 2015].

Hence, both projection and quantization are important. Op-
timal binary codes rely on the joint optimization of projec-
tion and quantization. However, how to elegantly connect
optimizing projection with optimizing quantization, and to
maximize the complementary effects of two stages, remains
a challenging problem in practice. Given a specified binary
code length k, shall we project more or quantize more?

The projection dimensionality in existing hashing methods
or quantization methods are all fixed, which is not flexible.
An intuitive thought is, when the original data points inher-
ently lie in a low dimensional space, we may project data
points to a lower-dimensional space (project more), while
performing finer quantization for each element by using mul-
tiple bits instead of a single bit (quantization less). For exam-
ple, we may project original data points into space R k

2 and as-
sign 2 bits to quantize the values of each projection element,
while the target code length remains as k. Through adaptively
adjusting the projection dimensionality, we may minimize the
information loss over the whole course of Hashing, in which
the balance between projection and quantization can be ad-
dressed by the optimal projection dimensionality.

In this paper, we propose a novel approach Minimal Re-
construction Bias Hashing (MRH) to tackle the joint opti-
mization of projection and quantization. We summarize the
main contributions of this paper as follows:

• We present a novel approach to learn similarity preserv-
ing binary codes which jointly optimizes both projec-
tion and quantization stages with adjustable projection
dimensionality. To the best of our knowledge, this is
the first work that can adaptively adjust the projection
dimensionality to balance the information loss between
projection and quantization. Our practice of jointly op-
timizing projection dimensionality, projection matrix, as
well as quantization functions, has achieved the state-of-
the-art performance over several benchmarks.

• We reinterpret the problem of maximizing the similarity
preserving in Hashing from the perspective of minimal
reconstruction bias of signals. By introducing a lower
bound analysis, we establish the relationship between
the information loss from projection and quantization,
and the Hamming approximation errors, which justifies
the learning objective of our proposed MRH method.

• By analyzing the unimodal characteristics of the MRH
objective function with respect to projection dimension-
ality, we propose an effective solution to resolve the joint
optimization problem of MRH. In particular, we have
reduced the complexity of searching optimal projection
dimensionality from O(N) to O(log(N)).

2 Preliminaries
We firstly introduce the basic notations. Let matrix X =
[x1,x2, · · · ,xn] 2 Rd⇥n denote the samples of data points,
and k denote the length of target codes. The goal is to learn a

binary string bi 2 {0, 1}k for each data point xi 2 Rd with
the maximized similarity preservation in Hamming space.

The proposed binary code learning approach involves both
projection and quantization stages. At the projection stage,
we adopt linear projection to transform xi 2 Rd into a sub-
space

yi = T(xi) 2 R k
c ,

where T(xi) = Rxi and R 2 R k
c ⇥d. The projection matrix

R is required to be orthogonal, i.e., RR

> = I, to make the
projections of a vector in different dimensions independent of
each other. At the quantization stage, we quantize projection
vector yi into

b
yi = Q(yi) 2 H k

c ,

where H is the set of quantization centroid(s), and each ele-
ment in yi is quantized to a value in H. Finally, we use c bits
to encode each element of byi to obtain a binary string

bi = B(byi) 2 {0, 1}k.
Note that we introduce variable c to adjust the projection

dimensionality. If the given code length k is indivisible by c,
the target code length will round down to bk

c c⇥ c bits. In this
paper, we will figure out an optimal c value to make a joint
optimization of projection T(·) and quantization Q(·).

The range of Hamming distance is limited to the length of a
binary code. The maximum Hamming distance of c bits codes
is only c. When we use c bits to encode 2c values, the distance
consistency in the Hamming space cannot maintained. Let
us take the example of c = 2. We quantize the projection
values into 22 = 4 centroid(s) with �0 < �1 < �2 < �3,
namely, (00)2, (01)2, (10)2 and (11)2. We have k�1��2k <
k�1��3k, but dH(01, 10) > dH(01, 11) where dH(.) denotes
the Hamming distance.

To address the issue of inconsistent measurements, we
may resort to other distance measurer like Manhattan dis-
tance [Kong et al., 2012]. But this would seriously degrade
the retrieval efficiency [Wang et al., 2015]. By contrast,
Hamming distance measurement is extremely fast, and more
than 109 operations can be done per second [He et al., 2013;
Weiss et al., 2008], so that Hamming distance computing is
still the priority of effective and efficient ANN search. In this
work, we employ an incomplete encoding strategy to keep the
distance consistency in Hamming space, in which we only
quantize projection values into c + 1 equidistant centroid(s)
H = {�i}ci=0, where �i � �i�1 = � for 1  i  c. Then,
we apply unary representation [Gionis et al., 1999b] to en-
code each centroid B(�i) = Uc(i) for �i 2 H, where unary
representation Uc(i) is defined as a c bits binary string with i
ones followed by c� i zeros, e.g. U2(1) = 10, U3(0) = 000,
U4(2) = 1100. With the unary representation, the Hamming
distance between binary codes is proportional to the distance
of the centroid(s),

dH(B(�i),B(�j)) = k�i � �jk/�.

Clearly, unary representation is an incomplete encoding
method, as a c bits code can represent 2c states. To make
the Hamming distance consistent with the distance of quanti-
zation centroid(s), we have to discard parts of code space.
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Figure 1: Illustration of reconstruction bias from projection and quantization. Towards optimal binary coding, the aim is to
minimize this bias. The red lines indicate the reconstruction bias. This figure is best viewed in color version.

3 Minimal Reconstruction Bias Hashing
We formulate the problem of optimal binary coding (i.e., op-
timal hashing) from the perspective of minimizing the recon-
struction bias of signals [Allen and Gray, 2012]. The rela-
tionship between minimal reconstruction bias and Hamming
approximation errors will be studied as well.

3.1 Reconstruction Bias
The reconstructed data points are recovered from the com-
pressed codes. Given the hashing code bi of data point xi, we
obtain the reconstructed data by first decoding bi to quanti-
zation centroid(s) and then transforming the quantization vec-
tor back to the original space (see Fig.1). Specifically, we first
decode bi and get byi = B�1(bi). Quantization function Q(.)
is not invertible, so yi can’t be recovered. Then, we directly
apply the inverse projection transformation to b

yi and get

b
xi = T�1(B�1(bi)) = R

>b
yi. (1)

Here, bxi is called the reconstructed data of xi. The recon-
struction bias is defined as the distance between b

xi and xi

d(xi, bxi) = kxi � b
xik2 = kxi �R

>b
yik2 (2)

where d(·) denotes the Euclidean distance, k · k2 denotes the
L2 norm of a vector.

3.2 Learning Objective
The reconstruction bias indicates the information loss in-
curred by mapping the data points into Hamming space. To
preserve the similarity structure of original data points, we
aim to minimize the reconstruction bias. Directly optimizing
the objective function in Eqn.2 is intractable due to a large
number of free parameters in b

yi and the orthogonal constraint
R. Hence, we propose to relax d(xi, bxi) as

kxi �R

>b
yik2  kxi �R

>
yik2 + kR>(yi � b

yi)k2. (3)

The first term indicates the distortions by transforming yi

back to xi. When R is orthogonal, for any vector a, we have1

kR>
ak2 = kak2. So the second term actually indicates the

mean square error (MSE) of byi. Let Y = [y1,y2, · · · ,yn]

denotes the projection matrix and b
Y = Q(Y). To resolve

optimal binary coding, we formulate the problem of jointly
minimizing the projection distortions and the quantization er-
rors, in which the projection dimensionality may be variable

1kR>
ak22 = (R>

a)>R>
a = a

>
RR

>
a = kak22

as well. Specifically, the learning objective is formulated as

min
c,R,bY

kX�R

>
Yk2F + kY � b

Yk2F ,

s.t. 1  c  k, R 2 R k
c ⇥d, RR

> = I

Y = RX, b
Y 2 H k

c ⇥n, kHk = c+ 1.

(4)

where k · kF denotes the Frobenius norm, kX�R

>
Yk2F de-

notes the sum of projection distortions, indicating the infor-
mation loss in the projection stage, and kY � b

Yk2F denotes
the sum of mean square error (MSE), indicating the informa-
tion loss in the quantization stage. In particular, variable c is
to adjust the projection dimensionality to adaptively balance
the information loss between the projection and quantization
stages in a joint optimization.

3.3 Relationship to Hamming Approximation
Similarity preserving hashing methods aim to map close data
points to near binary codes [Gionis et al., 1999a; Andoni and
Indyk, 2006]. Conversely, if two data points are far away
in the original space, their binary codes should produce a
large Hamming distance. We will show that the distance
approximation error between the original distance and the
root mean square Hamming distance is a lower bound of the
learning objective in Eqn.4. Since the Hamming approxima-
tion quality, as a critical indicator, can significantly impact
the performance of ANN search [Kulis and Darrell, 2009;
He et al., 2013], this lower bound analysis may justify the
rationale of the proposed learning objective.

In hashing methods, the similarity of two data points xi

and xj is defined by the Hamming distance of their hash-
ing codes, dH(bk

i ,b
k
j ), where b

k
i = B(byk

i ), bk
i and b

y

k
i de-

note the k-th element in vector bi and b
yi, respectively. Let

l denote the projection dimensionality, sk the Hamming dis-
tance of the k-th hashing codes where sk = dH(bk

i ,b
k
j ). The

root mean square Hamming distance f(bi,bj) of two binary
strings bi and bj is defined as f(bi,bj) = (

Pl
i=1 s

2
i /l)

1
2 .

Consider the distance approximation error between the orig-
inal distance d(xi,xj) and the root mean squared Hamming
distance f(bi,bj). We have the theorem
Theorem 1. The distance approximation error between the
original distance and the root mean squared Hamming dis-
tance is a lower bound of objective function G,

X

i,j

�
d(xi,xj)� �f(bi,bj)

�2  µG

where parameter � and µ are two constant factors, which
� = �

p
l and µ = 32n.
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Proof. According to the triangle inequality, we have
X

i,j

kd(xi,xj)� d(bxi, bxj)k


X

i,j

kd(xi,xj)� d(xi, bxj)k+
X

i,j

kd(xi, bxj)� d(bxi, bxj)k

2
X

j

d(xi, bxj) + 2
X

i

d(xi, bxi) = 4d(xi, bxi).

Relax the right side of the above inequality, according to Cauchy-
Schwarz Inequality, we have

P
i d(xi, bxi)


X

i

kxi �R

>
yik2 + kR>(yi � b

yi)k2

(12 + ...+ 12)
1
2 (
X

i

kxi �R

>
yik22 + kR>(yi � b

yi)k22)
1
2

=
p
2n

⇣
kX�R

>
Yk2F + kY � b

Yk2F
⌘ 1

2
.

Then, with the inequality transitive property, we obtain
X

i,j

kd(xi,xj)� d(bxi, bxj)k  4
p
2nG

1
2 . (a1)

On the other hand, as kR>
ak2 = kak2, we have d(bxi, bxj)

= kbyi � b
yjk2 =

sX

k

d2
H(bk

i ,b
k
j ) = �

p
lf(bi,bj).

By substituting d(bxi, bxj) = �
p
lf(bi,bj) to (a1) and squaring

both sides of the inequality, we obtain Theorem 1.

4 Optimization
The goal is to minimize the objective of overall information
loss in Eqn.4 with variables c, R and b

Y.

4.1 Update b
Y and R

To resolve R and b
Y, we first fix the variable c, which is

meant to fix the projection dimensionality over the course of
alternating optimization of R and b

Y. The alternating fashion
works by updating R or b

Y with the other fixed.

Update b
Y

When updating b
Y, the learning objective reduces to the sec-

ond term kY � b
Yk2F . We simply assume that the data

distribution is zero-centered. If c is an odd number where
c = 2t + 1, the quantization centroid set H is represented as
H = {0,±�, ...,±t�}. Without loss of generality, we just
show the odd case. We quantize each element y 2 Y to the
nearest value in H

Q(y) = argmin
�2H

k� � yk2. (5)

The only variable in quantization function Q(.) is �. We
solve � by minimizing the sum of MSE kY � b

Yk2F ,

�⇤ = argmin
�

X

y2Y

ky �Q(y)k2. (6)

The above optimization problem is a multi chromatic pair
problem in computational geometry [Berg et al., 2000],
which can be solved by Expectation Maximization (EM) al-
gorithm [Moon and K, 1996].

Update R

Updating R is a typical orthogonality constraint optimization
problem. We apply the optimization procedure in [Z. and W.,
2013] to update R. Let U be the partial derivative of the ob-
jective function with respect to R. We have U = �2 bYX

>.
We first define the skew-symmetric matrix [Z. and W., 2013]

M = R

>
U�U

>
R. (7)

Then, we adopt Crank Nicolson like [Smith, 1965] scheme to
update the orthogonal matrix R

R

(t+1) = R

(t) � ⌧

2
(R(t) +R

(t+1))M (8)

where ⌧ denotes the step size, we empirically set ⌧ = 0.5.

Convergence
We alternatively update b

Y and R in several iterations until
convergence. In practice, we have found the algorithm con-
verges in about 50-100 iterations. A typical behavior of the
information loss (4) is shown in Fig.5.

4.2 Update c to Balance the Information Loss
Given a specified target code length, setting c as a large value
can improve quantization quality but would degrade projec-
tion quality, and vice versa. There exists a trade-off between
projection and quantization. To balance the information loss
between projection and quantization, we aim to optimize c
to minimize the objective of overall reconstruction bias. The
value of c ranges from 1 to the target code length k (say hun-
dreds or thousands). The brute-force enumeration method
would be costly.

Rather than exhaustive search, we propose a fast approach
to search for the optimal c, as our empirical findings have
shown that the objective function with respect to c is uni-
modal. To explain this important findings, we have derived
the theorem 2 by assuming a moderate distribution function
(i.e. uniform or Gaussian) of projection values.

Theorem 2. Function G(c) can be well-approximated by an
unimodal function, which only has a single local minimum
point c⇤. G(c) is monotonically decreasing for c  c⇤ and
monotonically increasing for c > c⇤.

Proof. According to the orthogonal constraint in R, we have

kX�R

>
Yk2F = Tr

⇣
(X�R

>
Y)(X�R

>
Y)>

⌘

=Tr
⇣
XX

> �R

>
YX

> �XY

>
R+R

>
YY

>
R

⌘

=Tr
⇣
XX

> �YY

>
⌘
= kXk2F � kYk2F .

Let matrix E = Y � Ŷ. G(c) can be simplified as

G(c) = kXk2F � kYk2F + kEk2F .
The first term is independent of c. Each term of kYk2F or
kEk2F contains n⇥ bd

c c elements. The expression of G(c)
depends on the distribution of projection values. We adopt
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statistical expectation for sample estimation. Without loss of
generalization, assuming d is divisible by c, we have

kYk2F =
X

y2Y

y2 t nd

c
E(y2),

kEk2F =
X

y2Y

(y �Q(y))2 t nd

c
E((y �Q(y))2).

When projection values Y are subject to an uniform distribu-
tion, the probability density function is given by

f(y) = 1/(p2 � p1), y 2 [p1, p2], p1 < p2.

Accordingly, we have [Allen and Gray, 2012]

E(y2) =
(p21 + p22 + p21p

2
2)

3
, E(y �Q(y)2) =

�2

12
.

In our method, step size � = p2�p1

c+1 . Then,

kYk2F =
nd(p21 + p22 + p21p

2
2)

3c
,

and

kEk2F =
nd(p2 � p1)2

12c(c + 1)2
.

Let � = nd(p21 + p22 + p21p
2
2)/3, µ = nd(p2 � p1)2/12 and

⌘ = kXk2F , G(c) can be represented as

G(c) =
�

c(c + 1)2
� µ

c
+ ⌘.

Take the derivative of G with respect to c. We have

@G

@c
= ��

3c2 + 4c + 1

(c3 + 2c2 + c)2
+

µ

c2
,

and
@G

@c
= 0 , �

µ
=

(c + 1)4

3c2 + 4c + 1
.

Let H(c) denote the function of right side in above equation,

H(c) =
(c + 1)4

3c2 + 4c + 1
=

(c + 1)3

3c + 1
.

H(c) is monotonically increasing for c � 1. Assume c⇤ is the
minimal point where G0(c⇤) = 0 and H(c) = �

µ . Then, for
c > c⇤ we have H(c) > �

µ i.e. G0(c⇤) > 0, and for c < c⇤ we
have H(c) < �

µ i.e. G
0
(c⇤) < 0. Thus, G(c) is unimodal.

Likewise, for Gaussian distribution f(y) = 1
�
p
2⇡

e�
(y�µ)2

2�2 ,
y 2 [µ� p, µ+ p], we can still derive the expression of G
by computing the expectation of y2 and (y � (Q(y)))2. We
employ the second order Taylors expansion to represent f(y)
and calculate E(y2) and E((y � (Q(y)))2) by computing the
integral of the Taylors expansion, followed by the derivative
and monotonic analysis for the proof.

G(c) is defined in discrete domain c 2 {1, 2, ..., k}. Ac-
cording to the unimodal property in Theorem.2, we can apply
ternary search to find out the optimal c⇤. We have

𝑙

𝑟𝑚1

𝑚2

If 𝐺 𝑚1 > 𝐺 𝑚2 , then
update 𝑙 = 𝑚1.

𝑙
𝑚1

𝑚2

𝑟

If 𝐺 𝑚1 ≤ 𝐺 𝑚2 , then 
update 𝑟 = 𝑚2.

Figure 2: A tool example of using ternary search algorithm to
update l and r for an unimodal function.

Theorem 3. Let c⇤ denote the minimum point of objective
function G(c). Assume we have already known c⇤ 2 [l, r].
Let s = r�l

3 , m1 = bl + 1
3sc and m2 = bl + 2

3sc. We have

• if G(m1)  G(m2), then l  c⇤  m2.
• if G(m1) > G(m2), then m1  c⇤  r.

Proof. Consider m1 6= m2. For G(m1) < G(m2), we have
c⇤  m2. If not, then m1 < m2 < c⇤. As function G(c) is
monotonically decreasing for c < c⇤, then G(m1) > G(m2).
This is contradictory with the assumption. Thus, c⇤  m2

and l  c⇤  m2. For G(m1) > G(m2), the same procedure
can be adapted to obtain m1  c⇤  r. If m1 = m2, we have
l = r. Obviously, Theorem 3 still holds.

The ternary search algorithm works as follows. We initial-
ize l = 1 and r = k. For each iteration, we set c = m1 and
c = m2 respectively, and solve G(m1) and G(m2) by alter-
natively updating R and b

Y. If G(m1)  G(m2), we update
r = m2. Otherwise, we update l = m1. The algorithm termi-
nates when l = r. As we cut out 1/3 search scope after each
iteration, the run time order is

T(k) = T(2k/3) + 1 = O(log k). (9)

The reduced complexity benefits the fast search of optimal c,
especially when learning long binary codes. Figure 2 shows
an example of ternary search.

Algorithm 1 The algorithm to optimize Equation (4).

Input: original data points {xi}li=1 and target code length k.
Output: a binary string bi for each data point xi.

Initialize l = 1 and r = k.
while l < r do

Let s = r�l
3 , m1 = bl + 1

3sc and m2 = bl + 2
3sc.

Set c = m1, c = m2, and calculate G(m1), G(m2) by
alternatively updating R and b

Y.
If G(m1)  G(m2), then set r = m2.
Otherwise, if G(m1) > G(m2), set l = m1.

end while
Set c = l. Project each xi into yi 2 R k

c and quantize each
projection value into c bits to obtain a binary string bi with
bk
c c ⇥ c bits.
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Figure 3: Results of recall rate of state-of-the-art hashing methods at code length 32, 64 and 128 bits on SIFT1M.
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Figure 4: Results of recall rate of state-of-the-art hashing methods at code length 32, 64 and 128 bits on GIST1M.
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Figure 5: Left: a convergence curve over CIFAR10. Right:
training time cost of baseline methods over ImageNet1M.

4.3 Complexity Analysis
We need O(log k) recursions to find out the optimal c. In each
recursion, we iteratively update b

Y and R. Let t denote the
number of iterations for the alternatively updating, t1 the iter-
ation number in EM algorithm and t2 the iteration number in
Crank Nicolson like scheme [Smith, 1965]. It takes O(t1c2n)

to update b
Y and O(nl + d2 + t2ld) to update R. The over-

all time complexity is O(log k(t1c2n+ ln+ d2 + t2ld)). We
will show the running time cost in the next section. Algorithm
1 shows the pseudo-code of our MRH algorithm.

5 Experiments
We evaluate and compare the approaches over five bench-
marks SIFT1M [Jegou et al., 2011], GIST1M [Jegou et
al., 2011], CIFAR10 [Krizhevsky, 2009], LableMe22k [Tor-

ralba et al., 2008] and ImageNet1M [Deng et al., 2009].
SIFT1M [Jegou et al., 2011] and GIST1M [Jegou et al.,
2011] are the feature datasets containing 1 million 128-D
SIFT [Lowe, 2004] and 960-D GIST [Aude and Torralba,
2001] features, respectively. The CIFAR10 dataset contains
60,000 images. The LabelMe22K dataset contains 22,019
images. Each image in CIFAR-10 and LabelMe22K is rep-
resented by a 512 dimensional GIST feature [Aude and Tor-
ralba, 2001]. ImageNet1M is another large-scale benchmark
with 1 million images. For each image, we extract a 4096-
D fisher vector [Perronnin and Dance, 2006] to evaluate the
performance in a high dimensional space.

5.1 Baseline Methods
We perform extensive comparison with 7 state-of-the-art
methods: Local sensitive hashing (LSH) [Andoni and In-
dyk, 2006], Iterative quantization (ITQ) [Gong and Lazeb-
nik, 2011], Shift invariant kernels hashing (SIKH) [Raginsky
and Lazebnik, 2009], Principal component analysis hashing
(PCAH) [Wang et al., 2006], Spectral hashing (SH) [Weiss
et al., 2008], K-means hashing (KMH) [He et al., 2013] and
Sparse Projection Hashing (SP) [Xia et al., 2015]. All the
methods are run with released source codes in default set-
tings.

5.2 Setting and Configuration
We follow most of previous hashing works to adopt the Ham-
ming distance ranking for ANN search. Recall rate and mean
average precision (mAP) are used for performance compar-
ison. For each benchmark, we select 1000 data points as
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Figure 6: Results of mAP of state-of-the-art hashing methods on LableMe-22K, CIFAR10,and ImageNet1M dataset.
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Figure 7: Results of information loss derived from the objec-
tive function when setting different c values.

queries and leave the rest as database. For each query, the top
100 nearest data points in Euclidean distance are used as the
ground truth. We random select 10K data points from each
dataset for training. We empirically set t = 100, t1 = 50
and t2 = 50. Figure 5(b) shows the training time. Except for
KMH [He et al., 2013], other baseline methods are run in a
single thread. All experiments are carried out over a server
with Intel i5 CPU at 3.20GHz and 64Gb memory cache.

5.3 Performance
Figure 4 and Figure 3 shows the results of recall rate of
baseline methods over datasets GIST1M and SIFT1M. The
proposed MRH consistently outperforms the state-of-the-art
methods. Over dataset GIST1M, the performance gains of
MRH are with 9.1%, 13.4% and 17.8% recall rate when rank-
ing 20,000 in code length 32 bits, 64 bits and 128 bits, respec-
tively, and with 7.1%, 5.4% and 3.2% recall rate on SIFT1M.

Figure 6 shows the mAP results of baseline methods. We
report the results over LabelMe, CIFAR and ImageNet1M.
MRH outperforms the baselines on all settings even at small
codes. As the code length increases, the performance gap be-
comes more significant. For example, MRH outperforms the
competitive method SP by 2.1%, 2.9%, 4.2%, 7.4%, 8.5%
and 7.1% at code length 8 bits to 256 bits over LabelMe,
respectively. Considerable improvements are also obtained
over CIFAR10 as well as ImageNet1M.

Figure 7 shows the impact of projection dimensionality for
learning 512 and 1024 bits codes over ImageNet1M. Variable
c produces balancing effects on projection and quantization.

Table 1: The optimal value of c for learning binary codes with
different length on dataset CIFAR, LabelMe and ImageNet.

Dataset Code Length 2n

 24 25 26 27 28 29 210 211

LabelMe 1 2 2 3 3 - - -
CIFAR 1 1 2 3 4 - - -

ImageNet 1 1 2 3 4 4 6 8

Increasing c reduces the quantization error but it incurs more
projection distortions, and vice versa. There exists a trade-off
between projection and quantization. From figure 7, the best
setting is c = 4 for 512 bits and c = 6 for 1024 bits. We
notice that MRH tends to set c to a large value for long size
codes, which means that more bits are allowed for quantizing
the values of each projection element. By adaptively adjust-
ing the projection dimensionality, MRH obtains discrimina-
tive codes with overall minimal information loss. Table 1 lists
the optimal settings of c on three datasets.

6 Conclusion
The joint optimization of projection and quantization impacts
the similarity preserving of binary codes, which is important
for generating discriminative binary codes. To optimize the
projection dimensionality has tackled the problem of balanc-
ing the information loss between the projection and quan-
tization stages. The practice of jointly optimizing projec-
tion dimensionality, projection matrix, as well as quantization
functions is expected to facilitate the state-of-the-art Hashing
methods.
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