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ABSTRACT 

In the latest Joint Video Exploration Team (JVET) develop-

ment, the quadtree plus binary tree (QTBT) block partition 

structure is proposed for more flexible block partitioning. 

Compared to the quadtree partitioning in HEVC, QTBT can 

achieve better compression performance at the expense of 

significantly increased encoding complexity. To address this 

issue, we propose a convolution neural network (CNN) ori-

ented fast QTBT partitioning decision algorithm for inter 

coding. We analyze the QTBT in a statistical way, which ef-

fectively guides us to design the architecture of the CNN. 

Furthermore, the false prediction risk is controlled based on 

temporal correlation to improve the robustness of the scheme. 

Experimental results show that the proposed algorithm can 

speed up QTBT block partition structure by reducing 35% 

encoding time on average with only 0.55% increase in bit rate, 

which enables its applications in practical scenarios.  

 

Index Terms— Quadtree plus binary tree, block parti-

tioning, CNN, video coding 

 

1. INTRODUCTION 

 

The block-based coding structure has been recognized as the 

core of the state-of-the-art video coding standards because of 

its capability in achieving high compression performance. To 

further investigate the flexibility of the block partitioning, a 

quadtree plus binary tree (QTBT) block partitioning structure 

was proposed during the recent Joint Video Exploration 

Team (JVET) development [1]. Fig. 1 illustrates an example 

of the QTBT block partition structure. For a CTU, it is first 

partitioned by the quadtree (QT), and then partitioned by the 

binary-tree (BT). For a block which has not been partitioned 

by the BT, it can be further partitioned by the QT, horizontal 

BT, or vertical BT, and the optimal mode minimizing the 

rate-distortion (RD) cost will be selected and signaled. After 

the BT partitioning, the final BT leaf nodes are termed as cod-

ing units (CUs) which are used for prediction and transform 

without any further splitting. During the encoding process, 
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Fig.  1. Illustration of the QTBT block partitioning structure. 

parameters MinQSize, MaxBTSize and MaxBTDepth restrict 

the minimal allowed QT leaf node size, maximal allowed BT 

root node size and maximal allowed BT depth. Though 

QTBT structure achieves higher compression performance 

compared to that in HEVC, the encoding complexity has also 

been dramatically increased due to the fact that more recur-

sive splitting iterations are performed. In view of this, a fast 

QTBT partitioning algorithm is highly desired.  

In the literature, the fast decision algorithms in video 

coding are mainly designed based on the statistical infor-

mation. In [2], Gweon et al. proposed a Coded Block Flag 

(CBF) based early termination method. In particular, if there 

exists zero CBFs for all luma and chroma components, the 

remaining partitions of the current CU can be totally skipped. 

In [3], Shen et al. exploited the mode correlations among dif-

ferent depth levels. In [4], Wang et al. proposed a model to 

estimate the RD cost in a low-complexity way. In [5], Vanne 

et al. proposed an optimized scheme that conditionally eval-

uates certain set of inter splitting modes according to inter-

mediate encoding information. The spatio-temporal correla-

tions among neighboring blocks are also studied in some 

works [6-7]. In JVET- D0095, the authors proposed to adjust 

the MaxBTDepth adaptively for each frame according to the 

temporal level [8]. In [9], Wang et al. proposed a local con-

strained QTBT algorithm including dynamic partition param-

eters derivation method and the limited binary tree partition-

ing method. These works are efficient in reducing the com-

putational complexity. However, they highly depend on the 

statistical information and hand-crafted features, which may 
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Table 1. Percentage of max QTBT depth for 128x128 CUs. 

Layer QP 
MaxDepth 

0 1 2 3 4 5 6 7 8 9 10 

0 

22 0.0  0.0  0.0  0.0  0.0  0.0  0.8  0.0  4.4  2.4  92.5  

27 0.4  0.0  0.4  0.0  0.0  0.0  1.2  2.4  5.2  4.0  86.5  

32 0.8  0.4  1.6  0.0  0.4  0.8  1.2  3.6  9.5  4.4  77.4  

37 3.2  0.0  2.8  0.0  1.2  2.0  2.8  4.4  10.7  9.1  63.9  

1 

22 1.8  0.4  0.4  0.0  0.4  2.2  3.1  2.7  5.4  5.8  77.7  

27 6.7  0.0  2.2  0.4  2.2  2.7  2.7  2.2  8.9  8.0  63.8  

32 12.9  0.9  2.2  0.0  4.5  1.8  5.8  2.2  15.6  11.6  42.4  

37 18.8  0.4  0.9  1.3  4.9  2.7  8.5  7.1  23.2  11.6  20.5  

2 

22 3.6  0.2  2.0  0.0  1.6  4.5  5.8  2.7  3.3  3.1  73.2  

27 7.6  0.9  4.0  4.0  5.4  1.3  1.1  1.3  7.6  8.0  58.7  

32 18.3  0.0  2.0  1.6  5.1  2.0  4.5  4.2  13.2  14.1  35.0  

37 22.1  0.0  3.1  1.8  6.0  2.5  7.6  9.4  20.3  15.6  11.6  

3 

22 11.3  0.3  3.3  2.3  5.9  2.5  1.7  1.2  6.1  7.4  57.9  

27 19.4  0.2  4.1  1.5  5.2  0.7  2.5  5.1  9.9  15.0  36.4  

32 24.1  0.6  4.4  0.7  6.1  3.9  8.8  8.8  14.3  15.8  13.2  

37 27.0  0.6  4.7  0.9  13.5  8.4  13.3  14.5  12.3  4.5  0.4  

Average 11.1 0.3 2.4 0.9 3.9 2.4 4.5 4.5 10.6 8.8 50.7 

Table 2. Percentage of max QTBT depth for 64x64 CUs. 

Layer QP 
MaxDepth 

0 1 2 3 4 5 6 7 8 9 10 

0 

22 0.0  0.0  9.6  0.0  0.2  0.6  1.5  3.1  11.5  5.0  68.6  

27 0.4  0.0  12.3  0.1  0.4  1.7  2.5  5.3  13.5  6.9  56.9  

32 0.8  0.4  16.1  0.4  2.5  2.3  3.0  5.1  16.1  6.1  47.4  

37 3.2  0.4  19.1  1.1  2.3  3.1  6.1  6.6  15.5  8.4  34.2  

1 

22 1.8  0.4  15.8  0.4  2.9  3.0  4.1  6.1  10.2  6.8  48.3  

27 6.7  0.0  22.0  0.9  4.1  3.1  3.8  5.9  13.7  7.6  32.1  

32 12.9  0.9  20.3  4.2  5.4  3.6  8.9  4.7  13.8  8.3  17.0  

37 18.8  0.4  20.8  3.8  7.0  4.9  11.7  6.7  13.8  6.1  5.9  

2 

22 3.6  0.2  20.8  0.2  3.8  5.2  5.2  4.6  9.4  5.8  41.1  

27 7.6  0.9  25.2  3.0  6.3  2.7  4.5  3.2  10.5  8.1  28.0  

32 18.3  0.1  22.9  2.5  7.0  3.1  7.0  5.6  12.1  8.2  13.1  

37 22.1  0.1  24.6  3.3  8.4  5.1  8.7  6.8  10.8  6.6  3.5  

3 

22 11.3  0.4  24.6  3.0  7.4  2.7  4.2  2.7  9.0  7.5  27.1  

27 19.4  0.2  25.9  1.9  7.4  3.3  5.1  4.6  10.0  8.9  13.3  

32 24.1  0.8  25.8  2.7  9.7  5.9  7.3  5.9  7.8  6.5  3.5  

37 27.0  1.5  27.0  3.9  14.3  7.4  7.7  5.7  4.2  1.1  0.1  

Average 11.1 0.4  20.8  2.0  5.6  3.6  5.7  5.2  11.4  6.7  27.5  

 

not be able to comprehensively reveal the statistics of natural 

video and the behaviors of the codec. 

Recently, the convolution neural network (CNN) has been 

found to be an effective method in determining the behavior 

of the codec. In [10], a CNN based CU partition mode deci-

sion algorithm for HEVC intra coding was proposed. For the 

purpose of sharing the same CNN architecture, 32x32 and 

16x16 CUs are subsampled to 8x8 matrices. In [11], Xu et al. 

represented the CU partition of an entire CTU in the form of 

a hierarchical CU partition map (HCPM), and established an 

early-terminated CNN architecture for learning to predict the 

HCPM. However, due to the new philosophy of the QTBT 

structure and the elimination of further splitting after the CU 

partitioning, existing fast algorithms for HEVC cannot be di-

rectly applied to QTBT structure. These challenges motivate 

us to develop a novel fast QTBT decision algorithm based on 

convolution neural network (CNN). To be best of our know- 

ledge, it is the first framework to speed up QTBT interframe 

coding based on CNN. 

Table 3. Percentage of max QTBT depth for 32x32 CUs. 

Layer QP 
MaxDepth 

0 1 2 3 4 5 6 7 8 9 10 

0 

22 0.0  0.0  9.6  0.1  9.9  2.6  3.5  6.6  16.6  5.3  45.8  

27 0.6  0.0  11.9  0.7  11.6  5.6  5.9  7.8  16.2  6.1  33.6  

32 0.8  0.4  16.2  0.8  16.7  4.7  5.4  7.6  16.0  6.2  25.2  

37 3.2  0.4  19.1  2.3  17.0  5.9  6.7  8.6  15.5  5.5  15.7  

1 

22 1.8  0.4  15.8  0.7  18.9  4.8  5.3  7.8  13.4  5.7  25.3  

27 6.4  0.0  24.6  3.1  20.9  5.5  5.3  5.6  10.0  5.2  13.3  

32 12.9  0.9  20.3  7.0  19.8  5.9  8.0  5.8  9.5  4.2  5.7  

37 18.8  0.4  20.8  8.0  20.2  7.1  8.8  5.0  7.0  2.2  1.7  

2 

22 3.6  0.2  20.8  0.5  21.6  6.3  5.8  6.3  10.8  4.8  19.3  

27 9.6  1.4  27.0  6.5  21.3  3.4  3.9  4.4  8.3  4.3  10.0  

32 18.3  0.1  22.9  5.4  21.5  5.3  6.3  5.2  7.3  3.4  4.2  

37 22.1  0.1  24.6  6.9  22.5  5.3  6.1  4.4  4.8  2.1  1.0  

3 

22 11.3  0.4  24.7  5.3  22.3  4.4  5.2  3.9  7.5  4.4  10.5  

27 23.6  0.4  27.5  3.0  22.0  3.3  4.1  3.7  5.4  3.5  3.7  

32 24.1  0.8  25.8  5.9  23.6  5.0  4.8  3.4  3.4  2.2  0.9  

37 27.0  1.5  27.4  8.1  23.6  4.8  3.9  2.0  1.3  0.3  0.0  

Average 11.5  0.5  21.2  4.0  19.6  5.0  5.6  5.5  9.6  4.1  13.5  

Table 4 Designed classifier for prediction the depth range. 

Class labels MaxDepth Texture description 

0 0 Very flat 

1 2 Flat 

2 4 Medium 

3 6 A certain texture 

4 8 High texture 

5 10 Deep texture 

 

2. PROPOSED CNN BASED FAST QTBT PARTITION 

 

In this section, we first analyze the QTBT in a statistical way, 

which effectively guides us to design the architecture of the 

CNN. Subsequently, the CNN architecture and the training 

method are detailed. Finally, the false prediction risk is con-

trolled based on temporal correlation to further improve the 

robustness of the scheme. 

 

2.1. Statistical analyses of QTBT  

 

During the encoding process, QTBT produces more partition 

shapes than HEVC, including 128x128, 128x64, 64x64, 

64x32, 32x32, 32x16, 128x32, 64x16, etc. However, the 

CNN based classification may not be appropriate for all CU 

sizes, as meaningful features need to be extracted in a data-

driven manner. Rather than predicting the splitting mode on 

each depth level, we model the depth of QTBT partitioning 

as a multi-classification problem. In particular, the QTBT 

depth is computed by  

𝐷𝑒𝑝𝑡ℎ𝑐𝑢 = 2 × 𝑄𝑇𝐷𝑒𝑝𝑡ℎ𝑐𝑢 + 𝐵𝑇𝐷𝑒𝑝𝑡ℎ𝑐𝑢 .           (1) 

According to the QTBT parameters setting, MinQSize = 

16x16, MaxBTDpth = 4, the QTBT depth varies in (0, 10). 

The distribution of the maximal QTBT depth (MaxDepth) 

for 128x128, 64x64 and 32x32 CUs are showed in Tables 1-

3, where “QP” and “Layer” are the quantization parameter 

and the temporal layer characterizing the reference relation-

ship, respectively. From Table 1-3, it is obviously observed 
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Fig. 2. Architecture of the CNN for QTBT fast partitioning. 

that the CU tends to be partitioned into deeper depth for lower 

QP or lower temporal layer, and vice versa. One can also dis-

cern that majority CUs are partitioned with less than depth 10, 

which implies that time saving can be achieved by restraining 

the depth range and excluding the unnecessary partition iter-

ations. However, if we directly predict the depth range of a 

whole CTU (128x128), it is observed from Table 1 that the 

average proportion of MaxDepth has a serious unbalanced 

distribution. In particular, the scarce distribution for 

MaxDepth ranging from 2 to 7 make the straightforward 

training with those data unpractical. It is also found that al-

most 50.7% CTUs demand the max QTBT depth which can-

not provide any time saving. Table 2 and 3 show the percent-

age of MaxDepth for 64x64 and 32x32 CUs, respectively. It 

is clearly observed that the distribution is relatively homoge-

nous, which are more appropriate to be trained. However, it 

is worth noting that the partitioning iterations between 

128x128 and 32x32 cannot to be simplified if 32x32 CUs are 

trained for classification. Based on the above considerations, 

64x64 CU is finally selected for CNN classification, which 

serves as the foundation of the proposed scheme. To avoid 

over-fitting for the categories with scarce percentage, such as 

“1” and “3”, we merge these categories into the adjacent cat-

egories to generate more reliable data, as shown in Table 4.  

 

2.2. CNN architecture and training 

 

In this work, we design a single network to predict the depth 

range of QTBT partitioning for 64x64 CUs. The architecture 

of the network is shown in Fig. 2. We first apply motion com-

pensation for the original block to convert it into residual 

block. The reason of such process lies in that the partitioning 

of inter coding mainly depends on the correlations between 

the current block and the reference blocks rather than the 

original signal. Then, the residual block is subtracted by the 

mean intensity values. After pre-processing, 4x4 kernels at 

the first convolutional layer is used to extract the low level 

features. For the second and third layers, feature maps are fur-

ther convoluted twice with 2x2 kernels. The final feature map 

is concatenated together and flatten into a vector. In the foll- 
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Fig. 3. Flowchart of the proposed scheme. 

owing full connection layers, the features vector, the supple-

mental factors QP, and temporal layer are nonlinearly fused 

in the fully connected layer for the final classification. The 

loss function evaluated based on the classification accuracy 

is formulated to optimize the neural network,  

𝑤 =  argmin
𝑤

{
1

2
𝑤𝑇𝑤 + (𝐿 − 𝑙)2}              (2) 

where 𝑤 represents the weight matrix of the network, 𝐿 and 𝑙 
are the actual and predicted labels, respectively.  

Training samples are collected with five sequences (Bas-

ketballPass, BQMall, Johnny, Cactus, and ParkRunning3) of 

different resolutions and characteristics. They were encoded 

with the JEM7.0 [12] reference software. Moreover, we elim-

inate such samples for which there is little RD cost difference 

between the optimal result and non-splitting case, since such 

samples may make the nets get trapped in ill-conditions dur-

ing the network training.  

 

2.3. Fast QTBT partitioning decision scheme 

 

In the proposed scheme, the QTBT partitioning decision is 

modelled as a multi-classification problem, and the depth 

range of 64x64 CUs is predicted by the developed network. 

To control the risk of false prediction, we utilize the temporal 

correlations among consecutive frames to modify the predict- 

ed depth range. The flowchart of the proposed scheme is 

shown in Fig. 3. 

Step 1: The current CTU is divided into four 64x64 

patches directly, and the MaxDepth 𝑑𝑖  (𝑖 = 0,1,2,3) is pre-

dicted for each patch with the neural network. 

Step 2: Same processing in Step 1 is applied to the co-

located CTU in the reference frame. As such, the actual and 

predicted MaxDepth of each co-located patch which are de-

noted as 𝐷𝑖
′ and  𝑑𝑖

′ can be obtained. 

Step 3: Modify the predicted MaxDepth as  

𝑑𝑖 = 𝑑𝑖 + max{𝐷𝑖
′ − 𝑑𝑖

′, 0}                     (3) 

When the co-located patch is precisely predicted, it is inferred
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Table 5.  Performance comparisons with the state-of-the-art methods. 

Class Sequence 
Proposed JVET-D0095 LC－QTBT [9] 

BD-Rate ∆ET NetT BD-Rate ∆ET BD-Rate ∆ET 

A 

Campfire +0.66% -40.6% 2.4% +0.53% -18.2% +0.72% -26.4% 

CatRobot1 +0.76% -37.2% 5.1% +0.57% -19.4% +0.61% -22.3% 

FoodMarket4 +0.40% -27.2% 2.0% +0.51% -20.2% +0.37% -16.9% 

B 

BasketballDrive +0.53% -35.5% 1.7% +0.37% -16.5% +0.50% -20.7% 

BQTerrace +0.73% -39.9% 1.8% +0.40% -17.6% +0.48% -21.0% 

MarketPlace +0.68% -38.8% 3.6% +0.37% -16.8% +0.61% -24.2% 

RitualDance +0.55% -32.6% 4.2% +0.72% -23.4% +0.44% -18.2% 

C 

BasketballDrive +0.73% -41.4% 1.5% +0.24% -10.2% +0.52% -23.8% 

PartyScene +0.54% -34.6% 2.2% +0.37% -18.6% +0.48% -22.0% 

RaceHorsesC +0.47% -30.7% 1.7% +0.72% -21.5% +0.66% -30.1% 

D 

BQSquare +0.44% -26.0% 2.1% +0.13% -15.4% +0.63% -28.4% 

BlowingBubbles +0.60% -35.7% 1.9% +0.40% -17.2% +0.71% -32.1% 

RaceHorses +0.51% -36.3% 2.7% +0.55% -18.2% +0.25% -10.8% 

E 
FourPeople +0.32% -28.9% 4.1% +0.52% -17.3% +0.32% -14.2% 

KristenAndSara +0.38% -33.8% 3.6% +0.56% -18.7% +0.41% -16.3% 

Average +0.55% -35.0% 2.7% +0.46% -17.6% +0.51% -21.7% 

that the network is reliable and 𝑑𝑖 keeps unchanged. If 𝑑𝑖
′ is 

predicted to be larger than its actual value, 𝑑𝑖 of the current 

patch is also unchanged to ensure enough partitioning depth. 

Otherwise, when 𝑑𝑖
′ is predicted to be smaller than its actual 

value, the prediction difference will be added to 𝑑𝑖
′. In this 

manner, the risk of false prediction, especially predict smaller 

value which results in decreasing the coding performance, 

can be controlled. 

Step 4: According to the outputs of four patches, the 

128x128 CU iterates different splitting modes. If all 𝑑𝑖  are 

zero, 128x128 CU conducts further partitions with depth less 

than 2, and the optimal shape will be selected. If only one 

𝑑𝑖 ≠ 0, the 128x128 CU will conduct all iterations while the 

patches with 𝑑𝑖 = 0 will be early terminated. Otherwise, the 

CTU will be directly partitioned by QT and each 64x64 CU 

iterates according to its corresponding depth range. 

 

3. EXPERIMENTAL RESULTS 

 

To evaluate the performance of the proposed algorithm, the 

proposed scheme is implemented into JVET reference soft-

ware JEM-7.0, and tested using Random Access (RA) con-

figuration. The experiments are conducted on all the common 

test sequences during the JVET development expect for the 

sequences used for training. The coding performance is eval-

uated using the Bjontegaard-Delta (BD) and delta encoding 

time (∆ET) is used to measure the time saving. Meanwhile, 

the time proportion of CNN classifier (NetT) to the whole en-

coding time is also measured. 

The simulation results are provided in Table 5. Com-

pared with the anchor JEM-7.0, it is observed that an aver-

aged 35% time saving can be achieved with 0.55% negligible 

BD-rate increase. One can also discern that consistent perfor-

mance is obtained for different sequences, which proves the 

effectiveness and robustness of the proposed algorithm. With 

respect to the computational burden of CNN classifier in the 

proposed framework, we can clearly see that the “NetT” time 

is 2.7% on average. This computational burden is fully ac-

ceptable compared with the overall time.   

To further verify the performance of the proposed frame-

work, we compare our scheme with the methods that reduce 

the complexity of QTBT in JVET-D0095 [8] and LC－QTBT 

[9]. The comparison results show that our proposed algorithm 

can reduce the encoding complexity by around twice as much 

as the other methods. With more time saving obtained, simi-

lar BD coding performance loss is observed compared to 

these works. These results further provide evidence that the 

proposed method is effective in optimizing the QTBT process. 

 

4. CONCLUSION 

 

In this paper, we propose a CNN oriented fast QTBT parti-

tioning decision algorithm for inter coding. We analyze the 

QTBT in a statistical way, which effectively guides us to de-

sign the architecture of the CNN. Furthermore, the false pre-

diction risk is controlled based on temporal correlation to im-

prove the robustness of the scheme. Experimental results 

show that the proposed scheme can consistently achieve 

promising performance for various video contents.  
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