
60

Efficient Generalized Fused Lasso and Its Applications

BO XIN, Peking University
YOSHINOBU KAWAHARA, Osaka University
YIZHOU WANG, Peking University
LINGJING HU, Capital Medical University
WEN GAO, Peking University

Generalized fused lasso (GFL) penalizes variables with l1 norms based both on the variables and their
pairwise differences. GFL is useful when applied to data where prior information is expressed using a graph
over the variables. However, the existing GFL algorithms incur high computational costs and do not scale
to high-dimensional problems. In this study, we propose a fast and scalable algorithm for GFL. Based on
the fact that fusion penalty is the Lovász extension of a cut function, we show that the key building block
of the optimization is equivalent to recursively solving graph-cut problems. Thus, we use a parametric flow
algorithm to solve GFL in an efficient manner. Runtime comparisons demonstrate a significant speedup
compared to existing GFL algorithms. Moreover, the proposed optimization framework is very general; by
designing different cut functions, we also discuss the extension of GFL to directed graphs. Exploiting the
scalability of the proposed algorithm, we demonstrate the applications of our algorithm to the diagnosis of
Alzheimer’s disease (AD) and video background subtraction (BS). In the AD problem, we formulated the
diagnosis of AD as a GFL regularized classification. Our experimental evaluations demonstrated that the
diagnosis performance was promising. We observed that the selected critical voxels were well structured,
i.e., connected, consistent according to cross validation, and in agreement with prior pathological knowledge.
In the BS problem, GFL naturally models arbitrary foregrounds without predefined grouping of the pixels.
Even by applying simple background models, e.g., a sparse linear combination of former frames, we achieved
state-of-the-art performance on several public datasets.

Categories and Subject Descriptors: C.1.6 [Optimization]: Convex Programming

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Generalized fused lasso, parametric cut, Alzheimer’s disease, background
subtraction

ACM Reference Format:
Bo Xin, Yoshinobu Kawahara, Yizhou Wang, Lingjing Hu, and Wen Gao. 2016. Efficient generalized fused
lasso and its applications. ACM Trans. Intell. Syst. Technol. 7, 4, Article 60 (May 2016), 22 pages.
DOI: http://dx.doi.org/10.1145/2847421

The authors were supported by the following grants: 2015CB351800, NSFC-61272027, NSFC-61231010,
NSFC-61527804, NSFC-61421062, NSFC-61210005, the Okawa Foundation Research Grant, the Microsoft
Research Asia Collaborative Research funding, JSPS KAKENHI 26280086 and 26120524, and Scientific
Research Common Program of Beijing Municipal Commission of Education KM201610025013.
Authors’ addresses: B. Xin, Y. Wang, and W. Gao, Nat’l Engineering Laboratory for Video Technology, Coop-
erative Medianet Innovation Center, Key Laboratory of Machine Perception (MoE), Sch’l of EECS, Peking
University, Beijing, 100871, China; emails: {boxin, Yizhou.Wang, wgao}@pku.edu.cn; Y. Kawahara, Institute
of Scientific and Industrial Research, Osaka University, Osaka 567-0047 Japan; email: ykawahara@sanken.
osaka-u.ac.jp; L. Hu, Bioinformatics Office, Department of Foundational Education, Yan Jing Medical
College, Capital Medical University, Beijing, 101300, China; email: hulingjing@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2157-6904/2016/05-ART60 $15.00
DOI: http://dx.doi.org/10.1145/2847421

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

http://dx.doi.org/10.1145/2847421
http://dx.doi.org/10.1145/2847421

60:2 B. Xin et al.

1. INTRODUCTION

Sparse models, such as lasso [Tibshirani 1996], basis pursuit [Chen et al. 1998], and
compressive sensing [Candès et al. 2006] have gained a great reputation in fields such
as machine learning and signal processing. Many applications in artificial intelligence
also benefit from similar strategies of pursuing sparsity, which are usually formulated
as an optimization problem with constraints or regularization using l1 or l0 norm
[Wright et al. 2009; Aharon et al. 2006; Candès et al. 2011]. Automatic selection of
relevant variables by such formulations leads to high performance.

However, in sparse models, sparsity is encouraged with little regard for the underly-
ing structural relationship between the variables. This can often result in overfitting
of the noise and inconsistent variable selection across different experiment trials, es-
pecially when the dimension/data ratio is high. In this regard, sparse models were
recently extended to explore structures of variables, and the problem of interest is
often referred to as structured sparse learning. A variety of regularization for different
structures and efficient algorithms solving the corresponding optimizations have been
proposed [Huang et al. 2011; Bach et al. 2012]. Fused lasso [Tibshirani et al. 2005]
is one of these variants, where pairwise differences between variables are penalized
using the l1 norm and thereafter selects sparse segments.

1.1. Generalized Fused Lasso

Let {(xi, yi)}N
i=1 be a set of samples, where xi ∈ R

d and yi ∈ R. X ∈ R
d×N and y ∈ R

N

denote the concatenations of xi and yi, respectively. We start from the definition of (1D)
fused lasso, which was first proposed by Tibshirani et al. [2005] and is formulated as

min
β∈Rd

1
2

‖y − XT β‖2
2 + λ1

d∑
i=1

|βi| + λ2

d∑
i=2

|βi − βi−1|, (1)

where β ∈ R
d and λ1, λ2 ≥ 0. Here, the variables, i.e., β, are assumed to have a

meaningful ordering, e.g., forming a chain structure. Due to the l1 penalties on both
single variables and consecutive pairs, solutions tend to be sparse and smooth—that
is, consecutive variables tend to be similar. The third term is usually called the fusion
penalty.

The preceding fused lasso method was proposed to pursue sparse segments on a chain
of variables. Thus, a natural generalization of this conventional 1D fused lasso aims to
promote smoothness between neighboring variables on a general/arbitrary graph struc-
ture. Suppose that we have a graph G = (V, E) with nodes V and edges E, where each
variable corresponds to a node on the graph; we can define such a generalization as

min
β∈Rd

1
2

‖y − XT β‖2
2 + λ1

d∑
i=1

|βi| + λ2

∑
(i, j)∈E

|βi − β j |. (2)

Equation (2) is usually referred to as generalized fused lasso (GFL).
In the present study, we propose to solve the following more general problem,

min
β∈Rd

l(β) + λ1

d∑
i=1

|βi| + λ2

∑
(i, j)∈E

wi j |βi − β j |, (3)

where l : R
d → R is a smooth convex function of the type C1,1 [Nesterov 2004] and

wi j ∈ R are weights defined on the edges of the graph. With a slight abuse of notation,
we also refer this formulation to GFL in this article. The benefit of these generalizations
is clear cut: (1) by applying a general loss term, nonlinear functions such as logistic

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:3

Table I. Relations of GFL to Existing Models

Models l(·) λ1 ≥ 0 λ2 ≥ 0 Graph
Sparse models C1,1 ∀ 0 None
TV ‖β − z‖2

2 0 ∀ Undirected
Fused lasso ‖XT β − y‖2

2 ∀ ∀ Chain
GFL C1,1 ∀ ∀ General

regression (LR; for classification problems) can be applied, and (2) by inducing weights
wi j , extra prior knowledge can be incorporated to adaptively control the strength of
fusion. In Table I, we list some well-known models that can be viewed as special cases
of this extended GFL model. Specifically, sparse models like lasso, compressive sensing,
and so forth promote pure sparsity by solving the problem with λ2 = 0 where the fusion
term is not consider at all. The total variation (TV) formulation, often used in image
processing literature as a robust smoother/denoiser, is another special case where the
loss term is signal approximation, i.e., ‖β − z‖2

2, and it does not have the sparsity-
inducing l1 term. Therefore, the GFL can be viewed as using a combined prior of both
sparsity inducing and (robust)1 smoothness promoting, which ends up selecting sparse
cliques of variables. To efficiently solve this general GFL problem is the focus of this
article. Portions of this work have previously appeared in conference proceedings [Xin
et al. 2014, 2015a, 2015b].

1.2. Existing Algorithms

The first algorithm for solving fused lasso, i.e., Equation (1), which was proposed
by Tibshirani et al. [2005], is based on the two-phase active set algorithm SQOPT
[Gill et al. 1999]. This algorithm can be extended to GFL and implemented using
an off-the-shelf convex optimization solver. In general, however, it does not scale to
high-dimensional problems. (Accelerated) proximal gradient methods such as the fast
iterative shrinkage-thresholding algorithm (FISTA) [Beck and Teboulle 2009] solve
convex problems whose objective comprises both smooth and nonsmooth parts. Using
FISTA, Liu et al. proposed to solve Equation (1) by designing specific proximal operators
[Liu et al. 2010]. Although their algorithm is efficient and scalable for the 1D case, it
cannot be extended to GFL, i.e., on general graph structure, in principle. Friedman et al.
proposed a pathwise coordinate descent algorithm for a special case of Equation (2)
[Friedman et al. 2007], where the design matrix X is the identity matrix. The reported
efficiency of the algorithm is impressive; however, as suggested in Friedman et al.
[2007], this algorithm is not guaranteed to find exact solutions to general problems. In
Tibshirani and Taylor [2011], a solution path algorithm is proposed for Equation (2).
This algorithm solves for all possible parameters (λs) by finding critical changing points
in a dual problem, which, however, tend to be very dense in large problems.

In the present study, we propose an efficient and scalable algorithm for solving GFL.
Using proximal methods, the key building block of our algorithm is the fused lasso
signal approximation (FLSA). Based on the fact that fusion penalty is the Lovász
extension of a cut function, we apply a parametric flow algorithm and then the soft-
thresholding method to solve the FLSA in an efficient manner. The proposed algorithm
can find an exact solution (with respect to machine precision) to GFL, and it can
also be implemented with a stable and efficient parametric flow solver. Our runtime
experiments demonstrate that while solving the 1D fused lasso problem, the speed
of the proposed algorithm is competitive compared to the state-of-the-art algorithms.

1Robustness is addressed as compared to graph Laplacian smoothness, i.e.,
∑

(i, j)∈E wi j‖βi − β j‖2
2, where the

quadratic smoothing often overpenalizes large differences. Note that in practice, graph Laplacian also tends
to have a counter effect to sparsity inducing.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:4 B. Xin et al.

Table II. Definitions of Major Notations in This Article

Symbol
First

Appearance Definition
X, y Eq. (1) Data used by GFL, e.g., X are features and y are labels.
β Eq. (1) Variables of GFL.

λ1, λ2 Eq. (1) Tuning parameters of GFL, controlling the contribution of sparsity-inducing
and fusion terms.

l() Eq. (3) Any smooth convex function of the type C1,1.
wi j Eq. (3) Weights associated with edge (i, j) ∈ E.
k Eq. (4) Iteration index, i.e., βk is the value of β in the kth iteration of gradient

descent.
L Eq. (4) Lipschitz constant of ∇l().

�gf l(β) Eq. (5) �gf l(β) = λ1
∑d

i=1 |βi | + λ2
∑

(i, j)∈E wi j |βi − β j |.
z Eq. (7) z = βk − 1

L∇l(βk).
β

λ1
λ2

Eq. (8) β
λ1
λ2

= arg minβ f (β, λ1, λ2), where f (β; λ1, λ2) is the objective of Equation (7).
V Eq. (10) A finite set, in particular, corresponds to the index of set of β, i.e.,

{i|i ∈ 1, . . . , d}.
S Eq. (10) Any subset of V.
fc() Eq. (10) A cut function.
f̂c() Eq. (11) Lovász extension of the cut function fc().
B() Eq. (12) Base polyhedron of a submodular function.
t Eq. (12) An auxiliary variable, whose l2 norm is to be minimized.

g() Eq. (13) Auxiliary submodular function.
α, γ Eq. (14) Auxiliary variables for deriving parametric graph cuts.
xi , yi Eq. (16) AD features and labels.

c Eq. (16) Bias term in linear models.
X, y Eq. (17) BS data, i.e., X is the training frames and y is the testing frame.

a Eq. (17) Sparse linear coefficient, for modeling the background relationship.
e Eq. (17) Structured sparse foregrounds, whose prior is captured by the GFL

regularization.

Nevertheless, when solving the GFL problem, it significantly outperforms all existing
algorithms, especially with high-dimensional data.

The remainder of this article is organized as follows. In Section 2, we introduce
two practical problems that motivated our work, namely the diagnosis of Alzheimer’s
disease (AD) problem and the background subtraction (BS) problem. In Section 3, we
propose our algorithm for solving GFL, where the equivalence with parametric graph
cuts are established and an efficient optimization via parametric flow is proposed. The
efficiency of the proposed algorithm is validated in Section 4. In Sections 5.1 and 5.2,
we formulate both the AD and BS problems as GFL, respectively, and demonstrate its
promising performance. Section 6 concludes the article. Before proceeding, we summa-
rize the definitions of the major notations in Table II.

2. MOTIVATION

In this section, we introduce two specific artificial intelligence problems that motivated
our work in the first time. However, GFL can be applied to pursue structured sparse
pattern wherever prior information is expressed using a graph over the variables. Its
applications are not limited to the following ones.

2.1. Diagnosis of AD

A strong motivation of our work comes from the problem of the diagnosis of AD, which is
a challenging real-world problem. This problem is usually formulated as a classification
and/or prediction task, where structural magnetic resonance images (sMRIs) of human
brains are used as the input features. Because of its practical benefit, this problem is

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:5

Fig. 1. A brain voxel (in red) and its adjacency (in green), and the corresponding graph representation.

increasingly attracting many researchers from various fields, such as computer vision
and machine learning [Wan et al. 2012; Zhou et al. 2011].

In practice, the dimensionality of a brain image can be as high as millions, whereas
the number of available samples is usually limited to hundreds. Thus, appropriate
prior information is required. The critical brain voxels should be sparse and spatially
assembled into several anatomical regions with early damage. Existing methods either
assume independence between voxels, e.g., univariate selection [Dai et al. 2012], or they
use the volume of interest (VOI) [Zhou et al. 2011] data as a processing unit, which
loses much of the pathological information and might not be sufficiently sensitive for
early diagnosis.

By considering the structure of a brain sMRI as a 3D grid graph (Figure 1), we pro-
pose to formulate the diagnosis of AD as GFL. However, the existing algorithms do not
scale sufficiently well to solve this problem in feasible time. Thus, we demonstrate the
effectiveness of the proposed algorithm, which solves the problem within limited mem-
ory and time, as well as yielding promising classification accuracy, which is competitive
among the state-of-the-art methods. Perhaps more importantly from the pathological
standpoint, the selected voxels are very well structured: being connected, consistent
according to cross validation and in agreement with pathological prior knowledge.

2.2. Background Subtraction

BS is one of the key tasks for automatic video analysis. Usually, BS methods distinguish
foreground pixels from the background in a video sequence by designing a background
model and then comparing the current frame with the model.

Many methods for BS have been proposed in recent years. Comprehensive reviews
can be found in Herrero and Bescós [2009] and Brutzer et al. [2011]. One series of
successful work in this literature is to use Gaussian mixture models (GMMs) trained
from previous frames to model the intensity distribution of each pixel, e.g., Stauffer
and Grimson [1999] and Zivkovic and van der Heijden [2006]. Although nonparametric
methods are also proposed for better efficiency, e.g., Barnich and Van Droogenbroeck
[2011], most of these methods remain in the pixel-wise modeling framework and
leave the task of utilizing interpixel structural information to delicate postprocessing
[Brutzer et al. 2011; Haines and Xiang 2012]. Another series of work follows the
celebrated eigenbackground [Oliver et al. 2000]. They build a background subspace via
PCA and therefore are able to utilize background structure information. Perhaps not
surprisingly, however, the extracted foregrounds are still rather scattered, and there
exist both “holes” in the foregrounds and noisy falsely detected background pixels.

Quite recently, research such as that of Xu et al. [2013] and Mairal et al. [2011] apply
group lasso (with overlap) regularization to explicitly promoted structured foregrounds.
However, it is questionable whether predefined grouping of pixels is a good prior for
arbitrary foreground structures. Our experimental results show that even with elab-
orately designed grouping, these models perform inferiorly to GFL, which naturally

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:6 B. Xin et al.

models an arbitrary foreground shape (see Figure 12 in the Appendix). Nevertheless
the efficiency of existing GFL algorithms prohibit its application to the BS problem,
which usually deals with millions of variables. Therefore, we demonstrate the scala-
bility of the proposed algorithm. Moreover, we show that the proposed algorithm can
extend GFL using directed graphs. According to Boykov and Funka-Lea [2006], it is
desirable to apply directed graph under certain conditions where asymmetric weights
help to provide better segmentation at the boundaries.

3. EFFICIENT OPTIMIZATION FOR GFL

In this section, we propose an efficient and scalable optimization algorithm for GFL.
First, we introduce FISTA, which is applied to solve GFL by iteratively calculating
proximal operators. For GFL, we show that the computation of the proximal operator
can be formulated as one of the FLSAs. We then propose a parametric optimization for-
mulation to solve FLSA in an efficient manner, where we introduce a soft-thresholding
strategy to discard the sparse term, transform the FLSA to a minimum-norm-point
(MNP) problem under submodular constraints, prove its equivalence to recursively
solving parametric graph-cut problems, and solve this problem using a parametric flow
method.

3.1. Proximal Methods and FLSA

For smooth convex optimization problems, it was shown [Nesterov 2004] that there
exists a gradient method with O(1/k2) (k is the iteration index) convergent, which is an
“optimal” first order2 method according to Nemirovsky and Yudin [1983]. By extending
the method of Nesterov [2004] to the general case with nonsmooth terms, accelerated
proximal methods like FISTA achieve the same convergence rate [Beck and Teboulle
2009]. The price paid here is that in each iteration, fast algorithms must be designed
to solve a nonsmooth proximal operator. This idea has been applied to various sparse
learning problems, e.g., Beck and Teboulle [2009] and Bach [2010], and to 1D fused
lasso, e.g., Liu et al. [2010]. We also use FISTA to solve GFL in the present study.

Specifically, it is known that the optimization of any smooth objective function l(β)
can be achieved using a gradient method, where the updating rule of β can be viewed
as minimizing an approximation of the linearization of l() at the previous iteration βk,
Polëiı̀ak [1987], i.e.,

βk+1 = argmin
β

{
l(βk) + 〈β − βk,∇l(βk)〉 + L

2
‖β − βk‖2

2

}
, (4)

where L > 0 is the Lipschitz constant of ∇l().
Let us denote the regularization terms in Equation (3) as

�gf l(β) = λ1

d∑
i=1

|βi| + λ2

∑
(i, j)∈E

wi j |βi − β j |.

When there is a nonsmooth part �gf l(β) in the objective function of GFL (Equa-
tion (3)), using FISTA changes the updating rule to

βk+1 = argmin
β

{
l(βk) + 〈β − βk,∇l(βk)〉 + L

2
‖β − βk‖2

2 + �gf l(β)
}
. (5)

2Second-order methods are seldom used for high-dimensional problems, mostly because the computation of
the second-order Hessian matrix and its inverse is prohibitive when the feature dimensional is high.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:7

ALGORITHM 1: FISTA Algorithm for GFL

Input: L > 0, β0 ∈ R
d.

Output: β∗.
y1 = β0, t1 = 1.;
repeat

Call algorithms for proximal operator to solve

βk = argmin
β

{
�gf l(β) + L

2

∥∥∥β −
(

yk − 1
L

∇l(yk)
)∥∥∥2

2

}
.

Check stopping criteria, if true, return βk; else

tk+1 = 1
2

√(
1 + 4t2

k

)
, yk+1 = βk + tk − 1

tk+1
(βk − βk−1).

until convergence;

After some simple manipulations of Equation (5), e.g., ignoring constant terms of βk,
we have

βk+1 = argmin
β

{
�gf l(β) + L

2

∥∥∥∥β −
(

βk − 1
L

∇l(βk)
)∥∥∥∥

2

2

}
. (6)

Thus, the key to solving Equation (3) is how efficiently we can solve Equation (6),
which can be rewritten as

min
β∈Rd

1
2

‖β − z‖2
2 + λ1

d∑
i=1

|βi| + λ2

∑
(i, j)∈E

wi j |βi − β j |, (7)

where z = βk − 1
L∇l(βk) and λ1 and λ2 are scaled from Equation (3) by L. Problem (7)

is the proximal operator of solving GFL using proximal methods. Actually, problem (7)
is equivalent to the FLSA defined in Friedman et al. [2007] and Tibshirani and Taylor
[2011], which is itself a very useful formulation.

3.2. An Efficient Solution to FLSA by Parametric Flow

To the best of our knowledge, there are no previous reports of an efficient method for
solving the FLSA for high-dimensional problems. In the present study, we propose an
efficient solution to the minimization problem (Equation (7)) by using a parametric
flow method.

3.2.1. L 1 Soft Thresholding. First, let us denote the objective in Equation (7) by
f (β; λ1, λ2) and β

λ1
λ2

= arg minβ f (β, λ1, λ2). Then, we introduce the following lemma
[Friedman et al. 2007; Liu et al. 2010].

LEMMA 3.1. For any λ1, λ2 ≥ 0, we have

β
λ1
λ2

= sign
(
β0

λ2

) � max
(|β0

λ2
| − λ1, 0

)
, (8)

where � is an element-wise product operator.

PROOF. The proof can be done by exploring the optimality condition of Equation (7).
We give the sketch of the idea as follows. Note that since β0

λ2
is the optimizer of

f (β, 0, λ2), it satisfies ∂ f (β, 0, λ2)/∂β = 0 (subgradient is applied where nonsmooth).
Since the additional ‖β‖1 term in (7) is separable with respect to βi, we can show that
after applying the element-wise soft-thresholding defined in Equation (8), the resulted
β

λ1
λ2

satisfies ∂ f (β, λ1, λ2)/∂β = 0.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:8 B. Xin et al.

According to Lemma 3.1, a solution to Equation (7) can be obtained using the soft-
thresholding process. Therefore, based on this lemma, we will first solve the following
problem:

β0
λ2

= argmin
β

1
2

‖β − z‖2
2 + λ2

∑
(i, j)∈E

wi j |βi − β j |. (9)

Then, using Equation (8), a soft-thresholding process to β0
λ2

with respect to λ1, we
obtain a solution to Equation (7).

3.2.2. MNP Problem under Submodular Constraints. Since the second term of Equation (9)
is nonsmooth and nonseparable with respect to β, its optimization is still nontrivial.
Note that Equation (9) is known as a TV problem. Goldfarb and Yin [2009] used a
parametric flow algorithm to solve (9), but we cannot extend the algorithm to exact
GFL. This is because (1) the formulation gap between TV and GFL needs to be bridged,
and (2) in Goldfarb and Yin [2009], they assumed that β, z ∈ Z

d
+ (mostly for the benefit

of image processing applications). However, in our problem, at each iteration, we often
achieve continuous z, and therefore by adopting the algorithm from Goldfarb and Yin
[2009] will make the solution to GFL inexact.3

To develop an efficient algorithm for problem (9), we consider a transformation of
problem (9) into an MNP problem under submodular4 constraints. First, we propose
the following lemma, which describes the relation between the fusion penalty and a
cut function.

Let V := {1, . . . , d} denote a finite set (corresponds to the index of each βi, i ∈ 1, . . . , d).
Given a set of nonnegative weights w : V × V→ R+, a cut function of a set S ⊆ V is
defined by

fc(S) =
∑

i∈S, j∈V\S
wi j, (S ⊆ V). (10)

LEMMA 3.2. The fusion term
∑

(i, j)∈E wi j |βi − β j | is equivalent to the Lovász extension
of a cut function.

The proof is provided in the Appendix.

COROLLARY 3.3. When wi j =w ji , the Lovász extension becomes
∑

(i, j)∈E ŵi j |βi − β j |,
where ŵi j = { wi j

w ji

βi≥β j ,

βi<β j .
. This defines a directed extension of the common fused lasso

model.

Remarks. Note that one cannot simply define directed fused lasso by applying∑
(i, j)∈E wi j |βi − β j | with wi j = w ji. Because in this way, the fusion term is still undi-

rected with w′
i j = (wi j +w ji). Therefore, to view the fused lasso as the Lovász extension

of cut functions is necessary to derive directed fused lasso. Later, our experimental
results show that by using directed weights, GFL can further improve the performance
to certain applications.

3In Chambolle and Darbon [2009], a continuous TV is considered; however, the proposed algorithm is
designed for calculating a sequence of solutions to their own problems. It is difficult to extend to other
formulation. Nevertheless, the proposed algorithm is based on a specification of a more general theoretical
framework (and the method of Chambolle and Darbon [2009] can be viewed implicitly as one special case).
In other words, we derive to the parametric flow problem using the fact that the regularization term is an
instance of the Lovász extension of the generalized graph-cut functions (a type of submodular function). This
framework is easy to extend to other regularization terms.
4Some preliminary knowledge about submodular functions is provided in the Appendix.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:9

With Lemma 3.2, we can rewrite Equation (9) as

min
β∈Rd

1
2

‖β − z‖2
2 + λ2 · f̂c(β). (11)

Since a cut function is submodular, according to Bach [2010], this optimization problem
can be transformed into an MNP problem under submodular constraints.

PROPOSITION 3.4. Problem (11) is equivalent to the following problem:

min
t∈Rd,t∈B(fc−λ−1

2 z)
‖t‖2

2, (12)

where B(•) is the base polyhedron of a submodular function •. A minimizer β∗ of prob-
lem (11) is obtained by β∗ = −λ2t∗, where t∗ is a minimizer of problem (12).

The proof is provided in the Appendix for the completeness of the article.
For general submodular functions, problem (12) is solvable using submodular min-

imization algorithms, such as the MNP algorithm [Fujishige et al. 2006]. However,
the known fastest time complexity of submodular minimization is O(d5 EO + d6)
[Orlin 2009], where EO is the cost for a function evaluation, and thus this approach to
high-dimensional problems is infeasible in practice.

3.2.3. Parametric Graph Cut. To solve problem (12) in an efficient manner, we utilize a
parametric property of our MNP problem and apply a parametric flow algorithm, which
has a much less time complexity and can run very efficiently in practice.

The set function g(S) = fc(S) − λ−1
2 z(S) in Equation (12) is the sum of a cut function

and a modular function, which is still submodular (but not necessarily non-decreasing).
Thus, problem (12) is a special case of a separable convex minimization problem under
submodular constraints [Nagano and Aihara 2012], which can be solved by parametric
optimization (if the submodular function is nondecreasing). Now let us first assume
that g(S) is nondecreasing. We will later describe how to satisfy this nondecreasing
requirement in Lemmas 3.5 and 3.6.

For a parameter α ≥ 0, we define a set function gα(S) = g(S) − α · 1(S). Now that we
have assumed that g is a nondecreasing submodular function, there exists l + 1 (≤ d)
subsets

S∗ = {(∅ =)S0 ⊂ S1 ⊂ . . . ⊂ Sl (= V)},
and l + 1 subintervals of

R0 = [0, α1), R1 = [α1, α2), . . . , Rl = [αl,∞),

such that, for each j ∈ {0, . . . , l}, S j is the unique maximal minimizer of gα(S) for
all α ∈ Rj [Nagano and Aihara 2012]. Then, the unique optimal solution t∗ ∈ R

d to
problem (12) is determined by

t∗
i = g(S j+1) − g(S j)

1(S j+1 \ S j)
(13)

for each i ∈ V with i ∈ S j+1 \ S j (j ∈ {1, . . . , l − 1}). Thus, by computing the unique
maximal minimizer of gα for some appropriately selected αs, we can find all S j and
therefore compute t∗. A possible option for finding all “appropriate” αs would be to
apply the decomposition algorithm [Fujishige 2005; Nagano and Aihara 2012], which
recursively finds all S js.

Recall that g has to be a nondecreasing function to apply the preceding procedure.
However, this is not always the case for our choice g = f −λ−1

2 z. Therefore, we introduce
two lemmas from Fujishige [2005].

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:10 B. Xin et al.

Fig. 2. Construction of an s-t graph for problem (14). Given a graph G = (V, E) for GFL, the capacities on
edges are defined as follows: c(vi, v j) = wi j (i, j ∈ V), cs,vi = λ−1

2 zi − (γ − α) if λ−1
2 zi < γ − α or cs,vi = 0 and

otherwise (i ∈ V), and cvi ,t = (γ − α) − λ−1
2 zi if λ−1

2 zi > γ − α or cvi ,t = 0 and otherwise (i ∈ V), where cs,vi
and cvi ,t denote the capacities of the source-to-node and node-to-sink edges.

LEMMA 3.5. For any γ ∈ R and a submodular function f , t∗ is an optimal solution to
mint∈B(f) ‖t‖2

2 if and only if t∗ + γ 1 is an optimal solution to mint∈B(f +γ 1) ‖t‖2
2.

LEMMA 3.6. Set γ = maxi=1,...,d{0, f (V \{i}) − f (V)}, then f + γ 1 is a nondecreasing
submodular function.

By applying Lemma 3.6 to our case with f := g, we have a nondecreasing submodular
function g′ = g + γ 1. Then, after we have found the minimizer of the MNP under the
constraint of g′, i.e., t∗ +γ 1, we can apply Lemma 3.5 to obtain a solution of the original
problem.

Now that we have a nondecreasing submodular function, by applying the decompo-
sition algorithm, in each recursion, we solve the following problem:

min
S⊂V

fc(S) − λ−1
2 z(S) + (γ − α) · 1(S). (14)

Owing to the specific form of problem (14), we can solve it as an easier problem as
follows.

PROPOSITION 3.7. For any cut function fc, problem (14) is equivalent to an s-t cut
problem with the s-t graph defined in Figure 2.

PROOF. Problem (14) comprises modular terms and a submodular pairwise term. This
is a typical F2 type energy function [Kolmogorov and Zabin 2004], which is known to
be “graph representable” and can be minimized via graph-cut algorithms. Hence, by
following the construction of an s-t graph according to Kolmogorov and Zabin [2004],
we can solve problem (14) by solving an s-t cut on this graph.

As a consequence, we can obtain a solution to Equation (12) by solving s-t cut prob-
lems for some different αs:

Find minimum s-t cuts with respect to Equation (14) for different α ≥ 0, (15)

each of which can be efficiently solved via a max-flow algorithm. However, since the
parameter α only affects the edges from the source node or to the sink node, we do not
need to search αs that yield different solutions. Specifically, as can be seen from the con-
struction of the s-t graph, the capacities on source-to-node or node-to-sink edges have
the following properties: (1) the capacities on source-to-node edges are nondecreasing
functions of α, (2) the capacities on node-to-sink edges are nonincreasing functions of
α, and (3) the capacities on node-to-node edges are constant with respect to α. For such
cases, it is known that the parametric flow algorithm reported by Gallo et al. [1989]

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:11

ALGORITHM 2: Proximal Operator via Parametric Flow

Input: λ1, λ2 > 0 and z ∈ R
d.

Output: β∗ for problem (7).
Compute γ from Lemma 3.6;
Set up an s-t graph as in Figure 2 and find S∗ with parametric flow;
Compute from (13) and apply Lemma 3.5 to get t∗;
β0

λ2
= −λ2t∗.;

Apply Lemma 3.1 to get β
λ1
λ2

and β∗ = β
λ1
λ2

;

(the GGT algorithm) can be applied to find all solutions for all α ∈ R. Thus, we can
obtain the sequence of solutions to problem (14) for different αs by simply applying the
GGT algorithm, which runs in O(d|E| log(d2/|E|) as the worst case.

For better clarity, we summarize all of the steps in Algorithm 2, which is practically
very scalable (for solving MNP) and serves as the building block of Algorithm 1 to
finally solve GFL in an efficient manner.

4. RUNTIME COMPARISON

We investigated the efficiency of the proposed algorithm, i.e., fast generalized fused
lasso (fGFL). All experiments were performed using an Intel Xeon E5-2687 CPU at
3.10GHz with 64G memory. Our implementation of FLSA was written in C++ and that
of FISTA in Matlab.5

As mentioned in Section 1.2, several algorithms have been proposed for FLSA
and GFL. Here we compare the proposed fGFL with the following state-of-the-art
algorithms:

—SLEP package [Liu et al. 2009, 2010]: Implemented with Matlab and C for 1D fused
lasso and 1D FLSA.

—SPAMS [Mairal et al. 2011]: Implemented with C for 1D fused lasso and 1D FLSA.
—“flsa” R package: Implemented with R for general FLSA, which includes accelerated

implementations for 1D and 2D (grid) FLSA.
—“genlasso” R package [Tibshirani and Taylor 2011]: Implemented with R for GFL,

which includes accelerated implementations for 1D and 2D (grid) fused lasso. (Note
that it is limited to cases of N ≥ d.)

—CVX [Grant et al. 2008]: This is a general convex optimization toolbox. We employed
its general-use optimizer for GFL and FLSA.

We compared the application of the algorithms to 1D and 2D cases of FLSA defined in
Equation (7) and GFL defined in Equation (2). (Note that the proposed fGFL can be
applied to a more general case of Equation (3), for which most existing algorithms are
not applicable. Later we demonstrate the advantage of Equation (3) and our solution
based on their application to the AD problem.)

We generated data for the runtime comparison in the following manner. First,
for 1D fused lasso, i.e., Equation (1), we set parameter β as βi = 0.5 for i ∈
{d/2 − d/20, . . . , d/2 + d/20} and 0 otherwise. For 2D fused lasso, we set βi, j = 0.5
for i, j ∈ {√d/2 − √

d/20, . . . ,
√

d/2 + √
d/20} and 0 otherwise. For FLSA defined in

Equation (7), we set z = β + 0.05e, where e is a noise vector drawn from the standard
normal distribution. For GFL as in Equation (2), we generated N = d samples (because
“genlasso” cannot solve Equation (2) when N < d): xi ∈ R

d and yi = βT xi + 0.05ei, xi
and ei for i = 1, . . . , N are drawn from the standard normal distribution. We fixed

5The codes can be found at https://sites.google.com/site/jimxinbo/.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

https://sites.google.com/site/jimxinbo/

60:12 B. Xin et al.

Fig. 3. FLSA runtime comparison (in seconds) using different algorithms with variable dimensionality d.

Fig. 4. GFL runtime comparison (in seconds) using different algorithms with variable dimensionality d.

λ1, λ2 = 0.1 and applied the algorithm to a different dimension d to compare the run-
time. The graphs in Figure 3 and 4 show the runtimes obtained using the algorithms.

The algorithm that used the standard optimizer, e.g., CVX, needs to handle the
huge difference matrix D ∈ R

d×|E| for high-dimensional problems, which results in
a memory shortage. The number of critical points found by “genlasso” significantly
increases in high-dimensional problems, so we used the setting of “maxsteps=10,000,”
i.e., “genlasso” will find a maximum of 10,000 critical points. Both the explanations
account for the missing plots in Figures 3 and 4. Nevertheless, as illustrated in the 1D
cases, our algorithm was not the fastest, but it was competitive compared to the faster
algorithms. In general cases of GFL, e.g., 2D, our algorithm was the fastest compared
to existing ones. The speedup went to hundreds of times at the problem dimension
around 5,000.

5. APPLICATIONS

5.1. Diagnosis of AD

In the diagnosis of AD, two fundamental issues are AD/NC (normal healthy con-
trols) classification and MCI (mild cognitive impairment) conversion prediction, namely
MCIC /MCIS classification. Let xi ∈ R

d be the subject’s sMRI features, and let yi = {0, 1}
be the subject’s disease status (AD/NC or MCIC /MCIS). Since our algorithm is appli-
cable to general smooth convex loss terms, we used LR for the classification task and

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:13

Table III. Classification Accuracies (Acc.), Sensitivities (Sens.),
and Specificities (Spec.) by Different Models Applied to AD

ADNC MCI
Acc. Sens. Spec. Acc. Sens. Spec.

SVM 82.71% 80.65% 84.51% 67.38% 40.74% 83.91%
MLDA 84.21% 84.51% 83.87% 63.83% 65.52% 61.11%
Laplc 83.41% 79.03% 87.24% 70.21% 40.74% 88.51%
LR 80.45% 74.19% 85.92% 63.83% 50.00% 72.41%
L1 81.20% 75.81% 85.92% 68.79% 48.15% 81.61%
GFL 84.21% 80.65% 87.32% 70.92% 50.00% 83.91%

formulated the problem as GFL in the following manner:

min
β∈Rd,c∈R

N∑
i=1

log (1 + exp (−yi(βT xi + c))) + λ�gf l(β). (16)

We define the graph structure as illustrated in Figure 1. Problem (16) is an exact
instance of problem (3), and thus the proposed algorithm can be directly applied. Note
that other existing algorithms are not feasible in practice, even if we adopt the least
square loss as in Equation (2).

Data. Data used in our experiments is obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.ucla.edu). We used 1.5T baseline
MRI scan data. In the study, 62 AD patients, 71 NC, and 141 MCI patients (54 MCIC and
87 MCIS) are included. In the Appendix, we provide all subject IDs for easy repeating
of the experiments. Data preprocessing is done following the DARTEL VBM pipeline
[Ashburner 2007], as is commonly done in the literature. Here, 2,873 8 × 8 × 8 mm3

size voxels that have values greater than 0.2 in the mean grey matter (GM) popu-
lation template serve as the input features. We design experiments on both AD/NC
classification (ADNC) and MCI prediction (MCI) tasks.

Performance. Ten-fold cross-validation evaluation is applied and classification accu-
racy for all tasks are summarized in Table III. Under the same experiment setup, we
compare GFL with LR, SVM, sparse modeling, e.g., the lasso (l1), and its graph Lapla-
cian structured variants, i.e., Laplc, and the “MLDA” model [Dai et al. 2012], which
applies a variant of Fisher discriminant analysis after univariate feature selection (via
t-test). For each model, we used grid search to find the optimal parameters, respec-
tively. Based on the accuracy, GFL outperforms LR, l1, Laplc, and SVM on each task
and achieves better results than MLDA on most tasks. MCI tasks are of more clinical
importance and, in general, are more challenging than ADNC tasks. Notice that GFL
obtains better performance gain in MCI tasks. These promising results justify that by
inducing both sparsity and fusion priors, GFL captures useful information about AD.

Strictly speaking, it is hard to compare to other reported works on the AD problem.
This is because most work removes samples whose MRI data are irregular—that is,
outliers. In this way, different work ends up selecting different samples. Although we
do not explicitly remove “outliers,” our results still seem to be among the state of the
art. For example, in Cheng et al. [2012], their best performance on MCI tasks is 69.4%,
whereas our performance reached 70.92%. In Chu et al. [2012], our performance on
ADNC tasks is comparable to or better than all of theirs (84.21% vs. 81% to 84%), and
our performance on MCI tasks is much better (70.92% vs. 65%).

Feature selection. For each task, we perform feature selection using all data with the
optimal parameters selected via cross validation. The selected features are those whose
β are not zeros. In Figure 5, the result of ADNC is used to illustrate the feature selection
by different models. In the top row, we illustrate all selected voxels. In the middle row,

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

http://adni.loni.ucla.edu

60:14 B. Xin et al.

Fig. 5. Comparison of GFL with existing models. The top row illustrates selected voxels in a 3D brain model,
the middle row illustrates the top 50 atrophied voxels, and the bottom row illustrates a projection onto one
brain slice. (a) GFL (best accuracy 84.21%). (b) l1 (best accuracy 81.20%). (c) l1 (similar voxel number as (a)).
(d) Laplc (best accuracy 83.41%). (e) t-Test (best accuracy 84.21%).

we illustrate the voxels corresponding to the top 50 negative βi ’s (indicating the most
atrophied voxels). We then project the most atrophied voxels onto a slice in the bottom
row. We see that the selected voxels by GFL cluster into meaningful spatially connected
regions while selected voxels by l1 and t-test scatter around. The selected voxels by
Laplc tend to be much more than necessary due to the l2 regularization. Moreover,
the selected voxels of GFL are concentrated in the hippocampus and parahippocampal
gyrus (which are believed to be early damaged regions). On the other hand, l1 either
selects less critical voxels or probably selects noisy voxels not in early damaged regions
(see Figures 5(b) and (c) for an illustration).

To further compare the behavior of GFL with l1, in Figure 6 we illustrate the consis-
tency of the most atrophied voxels in different folds of the cross validation. We see that
the selected voxels by GFL have highly consistent spatial patterns. By comparing Fig-
ure 5 to Figure 6, we see that the consistent voxels are also pathologically meaningful,
as they correspond to the early damaged regions. On the other hand, the selected voxels
by l1 change much over each fold of cross validation. This comparison is also quantita-
tively justified by the percentage of overlapped voxels: GFL (66%) versus l1(22%). The
inconsistency of selected voxels by l1 indicates that rather than capturing meaningful
information of the diagnosis, it is probably affected by sample-dependent information,
e.g., noise.

In Figure 7, we demonstrate an interesting phenomenon by changing λ2 while λ1
is fixed. From Figure 7(a) through (d), we notice that as λ2 increases, more voxels
are selected and the connection between voxels becomes more obvious. However, the
additional voxels from one to another are not randomly selected. They emerge along the
boundary of the former selected voxels. Meanwhile, separated voxels either disappear
or are connected to large regions. From the perspective of clinical usage, this is a

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:15

Fig. 6. Consistency of selected voxels over different folds of the cross validation. The results of 5 different
folds are shown in (a) through (e), respectively, and the overlapped voxels of all 10 folds are shown in (f). The
top row illustrates results from GFL, and the bottom row illustrates results from l1. The percentage of the
overlapped voxels are GFL(66%) versus l1(22%).

Fig. 7. Different levels of cohesion. We fix λ1 and change λ2 from left to right in an increasing order.
The illustration is the selected voxels by our model applied to all data. The corresponding value of λ2 and
cross-validation accuracies are given in each subcaption.

desirable phenomenon. Moreover, the increased classification accuracy justifies that
the graph-based cohesion behavior of GFL is consistent with the structure of critical
voxels for AD. Otherwise, a balance between classification accuracy and that of voxel
cohesion will have to be made, and the added voxels from one to another will end up
being a more scattered pattern. As is also expected from a mathematical perspective,
when too much emphasis is made on cohesion, useless or noisy voxels are probably
selected and the performance begin to decrease, such as is shown in Figure 7(e) and (f).

5.2. Background Subtraction

Suppose that we are given a sequence of training video frames X ∈ R
N×d (d pixels) from

a fixed camera and a test frame y ∈ R
d. We model y as a sparse linear combination

of N training frames (the background model), plus an error term e ∈ R
d (an additive

foreground). We assume that e should be sparse and that the nonzero elements should
be spatially (2D grid) connected. We formulate the BS problem as GFL in the following
way:

min
a∈RNe∈Rd

1
2

‖y − Xa − e‖2
2 + λ1‖a‖1 + λ2 · �gf l(e). (17)

By defining X′ = [X, I] ∈ R
N×(d+N), problem (17) can be viewed as an instance of

problem (3). However, since the nonsmooth part of (17) is separable with respect to a
and e, we apply a different optimization method similar to that used in Mairal et al.
[2011] by alternating the optimization with respect to a and e. This method can be seen

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:16 B. Xin et al.

Fig. 8. An illustration of the alternating optimization of Algorithm 3. In each iteration (iter), either a (the
background model) or e (the foreground) is updated, and the objective (E) is decreasing until convergence.

ALGORITHM 3: ADM Algorithm for Problem (17)

Input: λ1, λ2 > 0 and y ∈ R
d, X ∈ R

N×d.
Output: a∗ ∈ R

N and e∗ ∈ R
d for problem (17).

Set a0 = 0, e0 = 0;
repeat

Call Algorithm 1 with λ2 = 0 to solve

ak+1 = argmin
a

{
1
2

‖(y − ek) − Xa‖2
2 + λ1‖a‖1

}
.

Call Algorithm 2 to solve

ek+1 = argmin
e

{
1
2

‖(y − Xak) − e‖2
2 + λ2 · �gf l(e)

}
.

Check stopping criteria, if true, return ak and ek.
until convergence;

as a variant of the alternating direction methods (ADMs) [Boyd and Vandenberghe
2004]. This method is practically much faster, and the convergence is guaranteed, as
(17) is convex with respect to the catenation of a and e (see Boyd and Vandenberghe
[2004]). We summarize the ADM algorithm for problem (17) in Algorithm 3. In Figure 8,
we illustrate the alternating effects and the fast convergence of this optimization via
a practical example. In our experiments, the average number of iterations taken to
converge is around 10.

We have shown that our algorithm also handles weighted GFL and, further, its
directed graph variant. Therefore, we utilized the information from the image to adap-
tively adjust the strength of the fusion term. We define the weights by matrix W as
follows:

w(1)
i j =

{
exp −‖c(i)−c(j)‖2

2
2σ 2 i, j connected,

0 otherwise,

where c(i) is the color intensity of pixel i and σ = 50 is empirically set. As is discussed in
Boykov and Funka-Lea [2006], in certain cases, directed costs can be applied to obtain
more accurate object boundaries. Following this idea, we also define an asymmetric

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:17

Table IV. Results for the Wallflower Dataset, Given as the Number of Pixels That Have Been Mix Classified

Methods MO TD LS WT CF BS FA
Frame difference 0 1358 2565 6789 10070 2175 4354
Mean+threshold 0 2593 16232 3285 1832 3236 2818
Block correlation 1200 1165 3802 3771 6670 2673 2402

Sta [Stauffer and Grimson 1999] 0 1028 15802 1664 3496 2091 2972
Oli [Oliver et al. 2000] 1065 895 1324 3084 1898 6433 2978

Toy [Toyama et al. 1999] 0 986 1322 2876 2935 2390 969
Hai [Haines and Xiang 2012] 0 330 3945 184 384 1236 1569

Can [Candès et al. 2011] 0 628 2016 1014 1465 2875
Jia [Xu et al. 2013] 0 912 1067 629 1779 1139

Ours 0 418 686 166 795 192

matrix W:

w(2)
i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(i)|sin(θ (i))| i → j, θ (i) ∈ (
0, π

2

) ∪ (3π
2 , 2π

)
g(i)|cos(θ (i))| i ↑ j, θ (i) ∈ (0, π)

g(i)|sin(θ (i))| i ← j, θ (i) ∈ (
π
2 , 3π

2

)
g(i)|cos(θ (i))| i ↓ j, θ (i) ∈ (π, 2π)
0 otherwise,

where g(i), θ (i) are the magnitude and orientation (with respect to the x-axis) of the
gradient of pixel i, and arrows illustrate the spatial relationship between adjacent
pixels. We define W = W(1) and W = ηW(1) + (1 − η)W(2) for undirected and directed
graph structures, respectively.

We apply GFL to data provided by two popular public BS datasets, namely the
Wallflower dataset [Toyama et al. 1999] and the SABS dataset [Brutzer et al. 2011].

Wallflower. Wallflower is a pioneer dataset in the literature and is still actively used.
This dataset provides manually labeled ground truth for natural video sequences of
different challenges in the BS problem [Toyama et al. 1999]. In Table IV, we compare
GFL to state-of-the-art models. Following the literature, we used “the number of pixels
that have been mix classified” as an evaluation. These results demonstrate that GFL is
a very competitive model for the BS problem. Specifically, on five out of seven sequences,
GFL achieved the best performance, competing with both well-known, e.g., Stauffer and
Grimson [1999] and Oliver et al. [2000], and very recent, e.g., Haines and Xiang [2012]
and Xu et al. [2013], models. In practice, we notice that for the sequence of “CF,” GFL
performs very poorly. This is mainly because the foregrounds in CF occupied too many
pixels, which violated our prior assumption of sparsity. The failure of RPCA ([Candès
et al. 2011]) and the group lasso model ([Xu et al. 2013]) justifies this, where both
models also assume sparse foregrounds. In Figure 9, we explicitly compare GFL to
sparse models and illustrate our results on five out of seven sequences, where we also
provide precision (p), recall (r), and F-score (F) as a supplemental evaluation. We see
that the cut foreground by sparse models (l1) have both much noise from the background
and many holes in the foreground. On the other hand, by incorporating the fusion term,
GFL cut much better in the foreground. From the comparison of the last two columns,
we see that the directed graph sometimes results in more accurate object boundaries,
although this is not always the case.

SABS. The SABS dataset provides artificial data and therefore high-quality ground
truth [Brutzer et al. 2011]. Results of several state-of-the-art algorithms (including
GMM, etc.) are provided on the related Web site. We apply GFL to the “Basic” setting
and demonstrate the comparison with state of the arts in Table V. (The compared
models are Mck [McKenna et al. 2000], Kim [Kim et al. 2004], McF [McFarlane and
Schofield 1995], Oli [Oliver et al. 2000], Mad [Maddalena and Petrosino 2008], Bar

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:18 B. Xin et al.

Fig. 9. BS results on the Wallflower dataset. From left to right: Test image, recovered background by directed
GFL, BS by directed GFL, GFL, and l1.

Table V. Results for the SABS Dataset, Given as F-Score

Mck Kim McF Oli Mad Bar Ziv Sta Li Can Jia Ours
.3806 .5601 .5887 .5891 .6672 .7177 .7232 .7284 .7457 .6483 0.7326 .7775

[Barnich and Van Droogenbroeck 2011], Ziv [Zivkovic and van der Heijden 2006], Sta
[Stauffer and Grimson 1999], Li [Li et al. 2004], Can [Candès et al. 2011], and Jia
[Xu et al. 2013].) One example frame (448) is illustrated in Figure 10. GFL almost
cut a perfect foreground as well as with its shadow. Notice that in the provided ground
truth, the shadow is not included, which makes the precision value (thereafter, F-score)
relatively low. However, this definition of foreground can be controversial depending
on the actual situations. Nevertheless, GFL outperformed all other state-of-the-art BS
methods on tested images. More results can be found in the Appendix and from our
Web site.6 Recall that in Xu et al. [2013] and Mairal et al. [2011], group structures such

6http://www.idm.pku.edu.cn/staff/wangyizhou/demo/BackgroundSubtraction/tist-ideo.mpg.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

http://www.idm.pku.edu.cn/staff/wangyizhou/demo/BackgroundSubtraction/tist-ideo.mpg

Efficient Generalized Fused Lasso and Its Applications 60:19

Fig. 10. Results on the SABS dataset. F-scores are shown.

Fig. 11. Comparison of different foreground regularizations.

as “3 × 3 blocks group” and “coarse-to-fine superpixel group” was used to model the
foregrounds. However, in practice, these sophisticated groupings are still not flexible
or trustworthy for representing arbitrary foregrounds (see Figure 11 for an example).

Recall that in Equation (17), the GFL assumption is made for the “additive fore-
ground” only, and therefore background models other than “the sparse linear combi-
nation of training frames” can also be enhanced by GFL. With simple modification, we
believe that most state-of-the-art background models can be improved by incorporating
GFL.

6. CONCLUSION

In this study, we proposed an efficient and scalable algorithm for GFL. We demon-
strated that the proposed algorithm runs significantly faster than existing algorithms.
By exploiting the efficiency and scalability of the proposed algorithm, we formulated

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

60:20 B. Xin et al.

both the diagnosis of AD and video BS problems as GFL. Our evaluations showed that
for both problems, GFL achieved state-of-the-art performance. Whereas existing algo-
rithms do not scale up to the dimensionality of these problems, the proposed algorithm
solves both problems in feasible time. Note that the proposed algorithm solves GFL
with arbitrary convex loss terms and general (directed) graph structures; these prop-
erties largely increase the usability of GFL in practice. Therefore, future extensions of
the framework to other applications would be interesting.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

Michal Aharon, Michael Elad, and Alfred Bruckstein. 2006. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing 54, 11, 4311–4322.

John Ashburner. 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38, 1, 95–113.
F. Bach. 2010. Structured sparsity-inducing norms through submodular functions. In Advances in Neural

Information Processing Systems (NIPS’10). Vol. 23. 118–126.
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. 2012. Optimization with sparsity-inducing penalties.

Foundations and Trends in Machine Learning 4, 1, 1–106.
Olivier Barnich and Marc Van Droogenbroeck. 2011. ViBe: A universal background subtraction algorithm

for video sequences. IEEE Transactions on Image Processing 20, 6, 1709–1724.
A. Beck and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM Journal on Imaging Sciences 2, 1, 183–202.
Stephen Poythress Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
Yuri Boykov and Gareth Funka-Lea. 2006. Graph cuts and efficient ND image segmentation. International

Journal of Computer Vision 70, 2, 109–131.
Sebastian Brutzer, Benjamin Hoferlin, and Gunther Heidemann. 2011. Evaluation of background subtraction

techniques for video surveillance. In Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’11). IEEE, Los Alamitos, CA, 1937–1944.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. 2011. Robust principal component analysis?
Journal of the ACM 58, 3, 11.

Emmanuel J. Candès, Justin Romberg, and Terence Tao. 2006. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory
52, 2, 489–509.

Antonin Chambolle and Jérôme Darbon. 2009. On total variation minimization and surface evolution using
parametric maximum flows. International Journal of Computer Vision 84, 3, 288–307.

Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. 1998. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing 20, 1, 33–61.

Bo Cheng, Daoqiang Zhang, and Dinggang Shen. 2012. Domain transfer learning for MCI conversion pre-
diction. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012. Springer,
82–90.

Carlton Chu, Ai-Ling Hsu, Kun-Hsien Chou, Peter Bandettini, and ChingPo Lin. 2012. Does feature selection
improve classification accuracy? Impact of sample size and feature selection on classification using
anatomical magnetic resonance images. Neuroimage 60, 1, 59–70.

Zhengjia Dai, Chaogan Yan, Zhiqun Wang, Jinhui Wang, Mingrui Xia, Kuncheng Li, and Yong He. 2012.
Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level charac-
terization with multi-classifier (M3). Neuroimage 59, 3, 2187–2195.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. 2007. Pathwise coordinate optimization. Annals of
Applied Statistics 1, 2, 302–332.

S. Fujishige. 2005. Submodular Functions and Optimization (2nd ed.). Elsevier.
S. Fujishige, T. Hayashi, and S. Isotani. 2006. The Minimum-Norm-Point Algorithm Applied to Submodular

Function Minimization and Linear Programming. Technical Report RIMS-1571. Research Institute for
Mathematical Sciences, Kyoto University.

G. Gallo, M. D. Grigoriadis, and R. E. Tarja. 1989. A fast parametric maximum flow algorithm and applica-
tions. SIAM Journal on Computing 18, 1, 30–55.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

Efficient Generalized Fused Lasso and Its Applications 60:21

P. E. Gill, W. Murray, and M. A. Saunders. 1999. User’s Guide for SNOPT 5.3: A Fortran Package for Large-
scale Nonlinear Programming. Technical Report. University of California, San Diego.

Donald Goldfarb and Wotao Yin. 2009. Parametric maximum flow algorithms for fast total variation mini-
mization. SIAM Journal on Scientific Computing 31, 5, 3712–3743.

Michael Grant, Stephen Boyd, and Yinyu Ye. 2008. CVX: Matlab Software for Disciplined Convex Program-
ming. Retrieved March 12, 2016, from http://cvxr.com/cvx/.

Tom S. F. Haines and Tao Xiang. 2012. Background subtraction with Dirichlet processes. In Computer
Vision—ECCV 2012. Springer, 99–113.

Sonsoles Herrero and Jesús Bescós. 2009. Background subtraction techniques: Systematic evaluation and
comparative analysis. In Advanced Concepts for Intelligent Vision Systems. Springer, 33–42.

J. Huang, T. Zhang, and D. Metaxas. 2011. Learning with structured sparsity. Journal of Machine Learning
Research 12, 3371–3412.

Kyungnam Kim, Thanarat H. Chalidabhongse, David Harwood, and Larry Davis. 2004. Background mod-
eling and subtraction by codebook construction. In Proceedings of the 2004 International Conference on
Image Processing (ICIP’04), Vol. 5. IEEE, Los Alamitos, CA, 3061–3064.

V. Kolmogorov and R. Zabin. 2004. What energy functions can be minimized via graph cuts? IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26, 2, 147–159.

Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, and Qi Tian. 2004. Statistical modeling of complex backgrounds
for foreground object detection. IEEE Transactions on Image Processing 13, 11, 1459–1472.

J. Liu, S. Ji, and J. Ye. 2009. SLEP: Sparse Learning with Efficient Projections. Retrieved March 12, 2016,
from http://www.yelab.net/software/SLEP/.

J. Liu, L. Yuan, and J. Ye. 2010. An efficient algorithm for a class of fused lasso problems. In Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 323–332.

Lucia Maddalena and Alfredo Petrosino. 2008. A self-organizing approach to background subtraction for
visual surveillance applications. IEEE Transactions on Image Processing 17, 7, 1168–1177.

Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. 2011. Convex and network flow
optimization for structured sparsity. Journal of Machine Learning Research 12, 2681–2720.

Nigel J. B. McFarlane and C. Paddy Schofield. 1995. Segmentation and tracking of piglets in images. Machine
Vision and Applications 8, 3, 187–193.

Stephen J. McKenna, Sumer Jabri, Zoran Duric, Azriel Rosenfeld, and Harry Wechsler. 2000. Tracking
groups of people. Computer Vision and Image Understanding 80, 1, 42–56.

K. Nagano and K. Aihara. 2012. Equivalent of convex minimization problems over base polytopes. Japan
Journal of Industrial and Applied Mathematics 29, 519–534.

A. S. Nemirovsky and D. B. Yudin. 1983. Problem Complexity and Method Efficiency in Optimization. John
Wiley & Sons.

Y. Nesterov. 2004. Introductory Lectures on Convex Optimization: A Basic Course. Springer.
Nuria M. Oliver, Barbara Rosario, and Alex P. Pentland. 2000. A Bayesian computer vision system for

modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8,
831–843.

J. B. Orlin. 2009. A faster strongly polynomial time algorithm for submodular function minimization. Math-
ematical Programming 118, 237–251.

B. T. Polëiı̀ak. 1987. Introduction to Optimization. Optimization Software, Publications Division, New York,
NY.

Chris Stauffer and W. Eric L. Grimson. 1999. Adaptive background mixture models for real-time tracking.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Vol. 2. IEEE, Los Alamitos, CA.

Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) 58, 1, 267–288.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. 2005. Sparsity and smoothness via the fused
lasso. Journal of the Royal Statistical Society: Series B 67, 1, 91–108.

R. J. Tibshirani and J. Taylor. 2011. The solution path of the generalized lasso. Annals of Statistics 39, 3,
1335–1371.

Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers. 1999. Wallflower: Principles and practice
of background maintenance. In Proceedings of the 7th IEEE International Conference on Computer
Vision, Vol. 1. IEEE, Los Alamitos, CA, 255–261.

Jing Wan, Zhilin Zhang, Jingwen Yan, Taiyong Li, Bhaskar D. Rao, Shiaofen Fang, Sungeun Kim, Shannon
L. Risacher, Andrew J. Saykin, and Li Shen. 2012. Sparse Bayesian multi-task learning for predicting

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

http://www.yelab.net/software/SLEP/

60:22 B. Xin et al.

cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, Los Alamitos, CA, 940–947.

John Wright, Allen Y. Yang, Arvind Ganesh, Shankar S. Sastry, and Yi Ma. 2009. Robust face recognition via
sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2, 210–227.

Bo Xin, Lingjing Hu, Yizhou Wang, and Wen Gao. 2015a. Stable feature selection from brain sMRI. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence.

Bo Xin, Yoshinobu Kawahara, Yizhou Wang, and Wen Gao. 2014. Efficient generalized fused lasso and
its application to the diagnosis of Alzheimers disease. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence. 2163–2169.

Bo Xin, Yuan Tian, Yizhou Wang, and Wen Gao. 2015b. Background subtraction via generalized fused lasso
foreground modeling. arXiv:1504.03707.

Jia Xu, Vamsi K. Ithapu, Lopamudra Mukherjee, James M. Rehg, and Vikas Singh. 2013. GOSUS: Grass-
mannian online subspace updates with structured-sparsity. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV’13).

Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. 2011. A multi-task learning formulation for predicting disease
progression. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, New York, NY, 814–822.

Zoran Zivkovic and Ferdinand van der Heijden. 2006. Efficient adaptive density estimation per image pixel
for the task of background subtraction. Pattern Recognition Letters 27, 7, 773–780.

Received December 2014; revised July 2015; accepted November 2015

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 60, Publication date: May 2016.

