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Abstract As one of key technologies in content-based near-duplicate detection and video
retrieval, video sequence matching can be used to judge whether two videos exist dupli-
cate or near-duplicate segments or not. Despite a lot of research efforts devoted in recent
years, how to precisely and efficiently perform sequence matching among videos (which
may be subject to complex audio-visual transformations) from a large-scale database still
remains a pretty challenging task. To address this problem, this paper proposes a multiscale
video sequence matching (MS-VSM) method, which can gradually detect and locate the
similar segments between videos from coarse to fine scales. At the coarse scale, it makes
use of the Maximum Weight Matching (MWM) algorithm to rapidly select several candi-
date reference videos from the database for a given query. Then for each candidate video,
its most similar segment with respect to the given query is obtained at the middle scale by
the Constrained Longest Ascending Matching Subsequence (CLAMS) algorithm, and then
can be used to judge whether that candidate exists near-duplicate or not. If so, the precise
locations of the near-duplicate segments in both query and reference videos are determined
at the fine scale by using bi-directional scanning to check the matching similarity at the
segments’ boundaries. As such, the MS-VSM method can achieve excellent near-duplicate
detection accuracy and localization precision with a very high processing efficiency. Exten-
sive experiments show that it outperforms several state-of-the-art methods remarkably on
several benchmarks.
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Every day, a large number of videos are created and transmitted over the network. People
can obtain the source files of the web videos handily and release the edited versions to the
Internet. This gives rise to the existence of a noticeable amount of copies or near-duplicate
videos on the Internet. Accordingly, it imposes urgent demands on video near-duplicate
detection as a key role in many tasks and applications such as video search, content filtering,
copyright protection, video usage monitoring, movie recommendation and video advertis-
ing [14, 25]. In content-based near-duplicate detection, one key issue is how to precisely
and efficiently judge whether two videos exist duplicate or near-duplicate segments and
where are their starting and ending timestamps [23]. This task, often referred to as video
sequence matching, is very challenging since the duplicate or near-duplicate segments may
be generated from the origins by means of various audio-visual transformations. To make
things worse, the content of many copies may be significantly changed from their origins.
To address this challenge, various video sequence matching methods and techniques have
been proposed in recent years.

Basically, existing works on video sequence matching can be divided into three cate-
gories according to the different matching granularities: global-level matching, segment-
level matching and frame-level matching. Global-level matching (e.g., [6, 16, 38]) considers
the query video (denoted by Q) as an entirety and attempts to find the near-duplicate seg-
ments by iteratively scanning over all the possible subsequences in the reference videos
(denoted by R). Here an implicit assumption is that the whole query video Q is or is not a
duplicate. For example, the work [6] transformed the video sequence to a normalized size,
then the similarity can be calculated by computing Hamming distance between video hash
values. The drawback of these global-level matching algorithms is that they cannot cope
with the case that one segment of Q is a duplicate of a small segment in the reference
video R ∈ R. Instead, segment-level matching (e.g., [30, 51]) partitions the videos into sev-
eral clips according to a fixed length or in terms of shots. Then the similar subsequences
can be found according to the similarity between each query clip and each reference clip.
However, this approach is still difficult to deal with the case when temporal transforma-
tions such as frames inserting or deleting are involved in generating the duplicate or copy.
Thus a more flexible paradigm, frame-level matching (e.g., [23, 42]), is to partition Q and
∀R ∈ R into audio-visual frames and then make use of the matching relationship between
the frames or some keyframes to determine the near-duplicate parts between two videos.
Obviously, frame-level matching methods can achieve much better performance on near-
duplicate detection and localization. However, because each frame or keyframe in Q and R

has to be involved in the matching calculation, the frame similarity evaluation is computationally
high. That is, suppose LQ and LR denote the average numbers of frames (or keyframes) in
a query video and a reference video, |R| denotes the size of the reference database, then the
computational complexity of frame-level matching is O(|R|LQLR) for a given query Q.
This causes a very high overhead for a large, continuously expanding reference database.

To accelerate frame-level matching, various frame-fusion methods (e.g., [11, 23, 27, 41,
42, 46]) have been proposed. Often, these methods firstly search a list of similar refer-
ence frames for each query frame, and then determine video matches by assembling the
frame matches with proper temporal fusing strategy. The main difference between them is
how to utilize temporal consistency constraints on frame matches to identify several video
matches. Typical models include 2D Hough Transform [27], spatio-temporal verification
[11], Viterbi-based frame fusion [42], approximate string matching [46], temporal pyra-
mid matching (TPM) [41], and frame matching-result graph [23]. Generally speaking, these
methods show promising performance on different benchmark datasets. However, how to
enable high-efficient matching in a very large reference database meanwhile maintaining a
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high performance on near-duplicate detection and localization is still a difficult topic. This
even becomes more challenging nowadays since Internet is actually such a continuously
expanding database with the unprecedented amount of videos.

Toward this end, this paper proposes a multiscale video sequence matching (MS-VSM)
method, which can gradually detect and locate the similar segments between videos from
coarse to fine scales. Our MS-VSM method still follows the frame-fusion framework and
performs three scales of matching: At the coarse scale, it makes use of the Maximum Weight
Matching (MWM) algorithm to rapidly select the candidate reference videos from the video
database for a given query; Then for each candidate video, its most similar segment with
respect to the given query is obtained at the middle scale by the Constrained Longest Ascend-
ing Matching Subsequence (CLAMS) algorithm, and then can be used to judge whether
that candidate video exists near-duplicate or not; Finally for the asserted case, the precise
locations of the near-duplicate segments in both query and reference videos are determined at the
fine scale by using bi-directional scanning to check the matching similarity at the segments’
boundaries. In this manner, the MS-VSM method can achieve excellent near-duplicate
detection accuracy and localization precision with a very high processing efficiency.

Extensive experiments were conducted on two benchmark datasets, including MUSCLE-
VCD-2007 [20] and CC WEB VIDEO [43]. Several state-of-the-art methods were used for
comparison. Experimental results show that the proposed MS-VSM method outperforms
these state-of-the-art methods remarkably on several benchmarks.

The remainder of this paper is organized as follows: We first briefly review the related
work for video sequence matching in Section 2. Section 3 describes the overall framework
and the algorithmic details of the proposed MS-VSM method. Extensive experiments are
presented in Section 4, and finally we conclude the paper in Section 5.

1 Related work

In this section, we briefly review the related work of frame-level video sequence matching
in recent years. Basically, the frame-level matching framework is to partition each query
video and all reference videos into audio-visual frames and then make use of the matching
relationship between the frames or some keyframes to determine the near-duplicate parts
between two videos. According to the different problem formulations and the used solving
techniques, the existing frame-level matching methods can be roughly divided into five
categories: temporal voting, probabilistic model, graph model, dynamic programming, and
multiscale model.

Temporal voting is the simplest approach to assemble similar frame pairs between each
query and reference video. Its basic idea is to extract a small number of pertinent features
from frames (or key frames) in a video and then match them with the database accord-
ing to a dedicated voting function [19]. In [10, 11], a spatio-temporal verification model
was introudced to characterize the matching relationship between the query video and the
potentially corresponding video segments. This spatio-temporal model first determines the
temporal shift based on 1-D Hough voting, and then determines the spatial component by
estimating a 2-D affine transformation between the matching video sequences. Similarly,
Liu et al. [27] applied 2D Hough transform to aggregate similarity scores on audio frames
from the matched audio segments, and then identified the segments that were fallen into the
peak bin as the copy segments in reference video. In [4], a spatio-temporal matching scheme
was proposed, by compiling the spatial and temporal information of all the frame pairs
from two video sequences as a 2D intensity map and then applying the Hough transform to
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search the map for the specific copy patterns. In [21],the largest matching score among all
keyframe-level similarities is treated as the video-level similarity.

Instead of the simple temporal voting, the probabilistic matching methods make use of
various probabilistic models to represent the matching relationship between videos. Nicolas
et al. [12] proposed a probabilistic Markovian framework to fuse a set of similarity searches
based on keyframes for identifying near-duplicate segments. In [22], a probabilistic model
was proposed for video copy location which was formulated as a likelihood maximization
problem. A simplified approach was also presented to reduce the maximization problem into
a set of 0-1 value problems based on the indexing structure. Huang et al. [15] represented a
video stream as a sequence of compact signatures called linear smoothing functions (LSFs)
and then adopted compound probability to combine three independent video factors to
effectively measure segment similarity in near-duplicate detection. A joint spatial-temporal
sequence alignment framework was formulated in [8] as a maximum a posteriori Bayesian
inference problem that would simultaneously satisfy a frame-correspondence and frame-
alignment similarity. This problem could be solved by iteratively alternating a min-sum
algorithm and a gradient descent algorithm.

Alternatively, the basic idea of graph-based matching methods is to formulate the prob-
lem of finding the similar parts between video sequences as a graph model and then utilize
different graph theory methods (e.g., longest path, bipartite matching, or dense subgraph) to
find the near-duplicate subsequences. In [23], a graph-based method was presented to con-
vert the video sequence matching into finding the longest path in the frame matching-result
graph with time constraint. Two bipartite graph matching algorithms, namely maximum
matching (MM) and optimal matching (OM), were proposed in [32] for the matching of
shots in clips, where MM was used to select candidate videos, while OM was used to calcu-
late the similarity between query and each candidate video. Similarly, in [17], the similarity
of two video clips could be measured by means of graph-based similarity measures such as
maximal cardinality bipartite matching, which then were used to determine whether a query
video and source video are near-duplicates. A graph transformation and matching approach
was proposed in [37], in which the mapping relationship between the query and the database
video was first represented by a bipartite graph, and then Maximum Size Matching (MSM)
was deployed for each subgraph to obtain a smaller set of candidates and Sub-Maximum
Similarity Matching (SMSM) was devised to identify the similar subsequences. By exploit-
ing temporal consistency of the matched keyframes between two video clips to construct a
graph, the work [3] formulated the task of detecting near-duplicate sub-clips as the prob-
lem of finding all the dense subgraphs, which would be solved by the optimization method
of graph shift. Similarly, in [50], a weighted keyframe matching graph was constructed to
model the matching relationship between the query keyframes and those of video data, and
then potential video subsequence candidates could be obtained by extracting a number of
maximal matching subgraphs from the matching graph.

Instead of utilizing the probabilistic or graph models, there are also many studies that
solve the video sequence matching problem by utilizing dynamic programming algorithms
such as Viterbi, dynamic time warping (DTW), Smith-Waterman and string matching. In
[42], the frame fusion problem was formulated as the decoding problem of a hidden Markov
model and a Viterbi-like dynamic programming algorithm was utilized to perform copy
determination and temporal localization, which comprised an online back-tracking strategy
with three relaxed constraints (i.e., emission constraint, transition constraint and gap con-
straint). By representing a video sequence using multiple features, a sliding-window-based
DTW algorithm was employed in [35] to compute temporal frame alignments between
two sequences. In [45], video copy detection was treated as a local alignment problem
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between two frame sequences and then the optimal local alignment could be computed by
the Smith-Waterman algorithm. In [46], a video was represented by an ordered list of fea-
ture descriptors, and similarities between such representations were then measured by the
approximate string matching technique. Liu et al. [24] adopted path matrix to aggregate
scores for measuring video similarity localizing the similar parts.

Generally speaking, the above four kinds of frame-level video matching methods have
shown promising detection and localization performance on different benchmark datasets.
However, with the continuously growing amount of videos on the Internet, the match-
ing efficiency has increasingly become the bottleneck problem. To facilitate high-efficient
video sequence matching, multiscale matching methods are attracting more and more atten-
tion in recent years. Tian et al. [31, 41] designed a multiscale sequence matching method
to assemble frame similarity search results into video-level matches by 2D Hough trans-
form and multi-granularities similarity evaluation. As such, video matching is performed
in a pyramid structure, making it computationally efficient. Similarly, Wu et al. [44] pre-
sented a coarse-to-fine near-duplicate video localization scheme. In the coarse scale, a fast
histogram matching algorithm was used to select the candidate segments; while in the fine
scale, the Intensity Mark (IMark) similarity between the query and each candidate segment
was calculated to refine the localization result. In [5], an alternative coarse-to-fine video
sequence matching strategy was presented, in which the coarse-grain level matching was
used to select candidate videos according to the measure of time-decay hit frequency, and
then the approximate Hough transform algorithm was applied to identify the near-duplicate
subsequences at the fine level. All these results show that, multiscale matching is a possible
solution to enable high-efficient matching in a very large reference database. Still following
such a framework, this paper proposes a novel multiscale video matching method, which
can achieve excellent copy detection accuracy and localization precision with a very high
processing efficiency.

2 The Proposed method

This section is to present our multiscale video sequence matching (MS-VSM) method.
Toward this end, we first formulate the sequence matching problem from multiple scales,
and then describe the algorithmic details of the MS-VSM respectively from the coarse, mid-
dle and fine scales. For more readability, Table 1 shows some main notations used in this
section.

2.1 Problem formulation

Generally speaking, the task of near-duplicate detection and localization can be stated as
follows: given a query video Q and a reference video dataset R, the task is to examine
whether there exists a reference subsequence {SR ⊆ R | R ∈ R} that is the near-duplicate
to a query subsequence SQ ⊆ Q, namely, whether D(Q,R) or more precisely D(SQ, SR)

holds, where SQ = [t (B)(Q), t(E)(Q)] and SR = [t (B)(R), t(E)(R)], t (B)(X) and t (E)(X)

denote the starting and ending positions of a segment in a video X, D(X, Y ) = 1 stands for
X being a copy of Y by the system (otherwise, D(X, Y ) = 0). According to our discussion
in Sec. I, if we follow the frame-level video matching paradigm, the computational com-
plexity of frame similarity evaluation should be O(ρ|R|LQLR) for a given query Q, where
ρ denotes the similarity evaluation time between two frames, LQ and LR denote the average
numbers of frames (or keyframes) in Q and R ∈ R, and |R| is the size of R. Therefore, it is
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Table 1 Main notations used in this section

Notation Meaning

Q, with
{
Q(C),Q(M),Q(F)

}
A query video, with its coarse, middle and
fine-scale representations

R ∈ R, with
{
R(C), R(M), R(F)

}
A reference video, with its coarse, middle
and fine-scale representations

(SQj
, SRk

) The matching pair between the j th subse-
quence of Q and the kth subsequence of R

(TQ, TR) The most similar segments between Q and
R, with TQ ⊆ SQj

and TR ⊆ SRk(
�S

(F)∓
Q ,�S

(F)∓
R

)
The boundary near-duplicate segments

before/after
(
T

(F)
Q , T

(F)
R

)
between Q and R

Sim
(
X(i), Y (i)

)
The ith-scale segment similarity between
X(i) and Y (i), where i ∈ {C, M, F}

ω(qs, rt ) The frame similarity between qs ∈ Q and
rt ∈ R calculated using frame features

m(qs , rt ) The boolean variable to indicate whether
qs ∈ Q and rt ∈ R are a matching pair

CQ =
{(

S
(C)
Q , S

(C)
R

)}
The candidate reference videos for Q con-
structed at the coarse scale

D(X, Y ) The value of 1 stands that X has a near-
duplicate of a segment of Y

L(X, Y ) The matching length between X and Y

{θ0, θ1, θ2} The pre-defined similarity thresholds at the
coarse, middle and fine scales

desirable to develop a highly efficient and effective matching method for a large reference
database.

To begin with our discussion, let’s first review one motivated example: Anyone who
used eletronic maps or vehicle navigation systems probably has the following experience.
If we want to search a route from Stanford University to Google, it is desirable that the

(a) (a) (a)

Fig. 1 A multiscale exploration of a route in an electronic map. a shows the entire route from Stanford
University to Google, b is the enlarged view of a specific street in the route, while c presents a detailed view
of a specific road intersection



Multimed Tools Appl

navigation system would allow an exploration from an overview of the route, to a local
view of a specific street in the route, and even to more details about the left/right turn lane
at a road intersection. Figure 1 illustrates such a paradigm. The background represents a
macroscopic view of the route in an entire region. This is analogous to viewing the route
10,000m above the ground and one can only watch the general direction and the overall
traffic flow in the route. As one zooms in to a local area of the route (e.g., a specific street
in the route), a mesoscopic view is obtained. Similar to watching the route 1,000m above
the ground, one can view the neighboring blocks around the street (e.g., the neighboring
streets, the landmark buildings). Finally, if one focuses on a detailed view of a specific
road intersection, a picoscopic view is achieved as if one were operating a vehicle. As
such, one can interact with the driving environment (e.g., signs, signals, etc.), make control
decisions (e.g., turn right), and manage the vehicle to dynamically respond to travel safely.
Overall speaking, such a multiscale representation allows one to explore the different levels
of details about the route, e.g., to decompose a whole route down to one or more local
segments.

The similar multiscale representation can also be applied to sequence matching. Let X

denote a video sequence, then we can derive its multiscale representation with different
sampling methods, in which the representer at each scale characterizes a different level of
abstraction of X. Figure 2 illustrates such a representation from three scales, denoted by
X(F), X(M) and X(C) from fine to coarse, respectively. To derive such a representation, the
simplest sampling method is uniform sampling (e.g., at the sampling rates of 10:1, 5:1 and
3:1, respectively). That is, for an one-minute video sequence X with the frame rate of 30 fps,
the frame numbers of X(F), X(M) and X(C) are 180, 36, and 12, respectively. A more reason-
able method is shot-based sampling. That is, X(F) can be obtained by uniformly sampling
X still at the sampling rate of 10:1, but X(M) is constructed by selecting several keyframes
for each shot (e.g., 3∼5 frames extracted from each shot, representing its center and bound-
aries), while X(C) can be derived from X(M) by selecting one representative keyframe for
each shot. In this case, we should perform the shot boundary detection over X. For simplic-
ity, this study adopts the uniform sampling method. Our experimental results show that this
simple sampling method performs very well.

Fig. 2 A multiscale representation of a video for video sequence matching
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In practice, such a multiscale representation can offer a significant advantage for video
sequence matching. Typically, the coarse representation can enable high near-duplicate
detection efficiency but cannot guarantee the accuracy; the situation is quite the contrary for
the fine representation. Thus a natural solution is to combine the representations at multi-
ple scales to enable both high effective and efficient video sequence matching. Toward this
end, this study is to develop a multiscale video sequence matching (MS-VSM) approach.

One key issue is whether this approach is theoretically feasible, or equivalently, whether
the matching results from multiple scales are inherently consistent. The term “consistency”
here concerns the coupling among the matching results at different scales. Fortunately, the
quotient space theory [47] provides the theoretical foundation for multiscale matching. In
this theory, two most important properties are “falsity-preserving” and “truth-preserving”.
The so-called “falsity-preserving” property says that if a proposition is rejected in the coarse
space, it must be false (i.e., without solution) in the finer space; while the “truth-preserving”
property indicates that if a proposition is true in coarser-grained space, then under certain
conditions, the corresponding problem in the fine space is also true. When applied to our
problem, the two properties can guarantee the feasibility of the MS-VSM approach. That
is, for a large-scale video matching problem, we can transform it into several equivalent
prolems in the coarser-grained spaces so as to reduce the complexity of problem solving.
More formally, given a query video Q and a reference video R ∈ R, if D(Q(i), R(i)) in two
coarse scales hold where i ∈ {C, M, F} (e.g., D(Q(C), R(C)) and D(Q(M), R(M))), then we
can deduce that D(Q,R) must be true according to the “truth-preserving” property. On the
contrary, if D(Q(C), R(C)) does not hold, we know immediately that D(Q,R) is not true
according to the “falsity-preserving” property.

Then, the remaining issue is how to perform video sequence matching from multiple
scales. In this study, the MS-VSM approach adopts the following steps to solve the video
near-duplicate detection and localization task:

(1) At the coarse scale, the MS-VSM rapidly selects the candidate reference videos from
the database R for a given query Q. Formally, let S

(C)
Q (or S

(C)
R ) denote a segment

of Q (or R ∈ R) at the coarse scale, the objective here is to construct the following
candidate set CQ:

CQ =
{(

S
(C)
Q , S

(C)
R

)
| Sim

(
S

(C)
Q , S

(C)
R

)
> θ0,

S
(C)
Q ⊆ Q(C), S

(C)
R ⊆ R(C),∀R ∈ R

}
(1)

where Sim
(
S

(C)
Q , S

(C)
R

)
denotes the similarity between the coarse-scale representa-

tions of two segments SQ and SR (called coarse-level similarity), and θ0 is a similarity
threshold at the coarse scale.

(2) At the middle scale, these candidates are further checked so as to determine whether

they are the near-duplicates or not. That is, for
(
S

(C)
Q , S

(C)
R

)
∈ CQ,

D(Q,R) = φ
(
S

(M)
Q , S

(M)
R

)
(2)

where φ(·, ·) is a classifier based on the middle-level similarity (namely, the simi-

larity between the middle-scale representations of two segments),
(
S

(M)
Q , S

(M)
R

)
are
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the corresponding middle-scale representations of
(
S

(C)
Q , S

(C)
R

)
. The simplest form of

φ(·, ·) is

∃T
(M)
Q ⊆ S

(M)
Q , ∃T

(M)
R ⊆ S

(M)
R :

Sim
(
T

(M)
Q , T

(M)
R

)
> θ1 &L

(
T

(M)
Q , T

(M)
R

)
> ζ1 (3)

where T
(M)
Q (or T

(M)
R ) is a subsequence of S

(M)
Q (accordingly, S

(M)
R ), L

(
T

(M)
Q , T

(M)
R

)

denotes the matching length between T
(M)
Q and T

(M)
R , θ1 is a similarity threshold at the

middle scale, and ζ1 is the pre-defined shortest length for a duplicate segment.1 That
is, if there is a matching subquence pair between S

(M)
Q and S

(M)
R whose length is more

than a pre-defined value and whose similarity is larger than a pre-defined threshold,

then D(S
(M)
Q , S

(M)
R ) holds; By combining the two facts that D

(
S

(C)
Q , S

(C)
R

)
= 1 and

D(S
(M)
Q , S

(M)
R ) = 1, D(Q,R) is naturally true.

(3) If D(Q,R) =1, the precise locations of the near-duplicate segments in Q and R will
be determined at the fine scale.

argmax
�S

(F)∓
Q ⊆S

(F)
Q ,

�S
(F)∓
R ⊆S

(F)
R

L
(
�S

(F)−
Q , �S

(F)−
R

)
+ L

(
�S

(F)+
Q ,�S

(F)+
R

)

s.t.Sim
(
�S

(F)−
Q , �S

(F)−
R

)
� θ2&

Sim
(
�S

(F)+
Q , �S

(F)+
R

)
� θ2 (4)

where θ2 is a similarity threshold at the fine scale, �S
(F)−
Q and �S

(F)+
Q denote the

neighboring segments in Q that locate before and after T
(F)
Q (i.e., the corresponding

fine representation of T
(M)
Q ), and similarly for �S

(F)−
R and �S

(F)+
R . Intuitively, this

localization process is to find the longest near-duplicate segments in Q and R that are

with the asserted
(
T

(F)
Q , T

(F)
R

)
as their center. As such, the final near-duplicate seg-

ments in Q and R are
{
�S

(F)−
Q �� T

(F)
Q �� �S

(F)+
Q

}
and

{
�S

(F)−
R �� T

(F)
R �� �S

(F)+
R

}
,

where the operator �� denotes the sequence concatenation operation.

We can see that given a very large reference database R, only the coarse process involves
a large amount of frame similarity calculation (namely, the coarse-level similarity between
frames in Q(C) ⊆ Q and R(C) ⊆ R where ∀R ∈R). After that, we only need to calculate the
middle-level similarity for all frame pairs in CQ, and if D(Q,R) holds, the fine-level sim-

ilarity between frames in
(
�S

(F)−
Q ,�S

(F)−
R

)
and between frames in

(
�S

(F)+
Q ,�S

(F)+
R

)
.

1Legally, only videos in which the length of identical or similar content is more than a pre-defined value
(e.g., 10 seconds) can be treated as duplicates or near-duplicates. According to our sampling method, the
frame number of a 10-seconds-video is 6, thus we can set ζ1 = 6 in our experiments.
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Their computational complexity is much less than that in the coarse step and thus can be
ignorable. Let L

(C)
Q and L

(C)
R denote the average numbers of frames in Q(C) and R(C), then

the computational complexity of the MS-VSM is approximately O
(
ρ|R|L(C)

Q L
(C)
R

)
. Con-

sidering that LQ and LR are hundreds of times more than L
(C)
Q and L

(C)
R , the MS-VSM

is computationally very efficient. Moreover, the computation can be further accelerated by
using the indexing structure of the features (e.g., the inverted table for SIFT Bag-of-Words
[28, 29]). In this manner, the MS-VSM is expected to achieve excellent near-duplicate
detection accuracy and localization precision with a very high processing efficiency.

Figure 3 shows the flowchart of our MS-VSM. We can see that it consists of three
main processes, namely, coarse-scale filtering, middle-scale refinement and fine-scale local-
ization. In the coarse-scale filtering process, the Maximum Weight Matching (MWM)
algorithm is used to rapidly filter the irrelevant videos from the reference database so as to
obtain the candidates for a given query; in the middle-scale refinement process, the Con-
strained Longest Ascending Matching Subsequence (CLAMS) algorithm is then adopted to
obtain the most similar segments of these candidates, which are then used to make a definite
judgement about whether these candidates exist some near-duplicate segments of the given
query; while in the fine-scale localization process, bi-directional scanning operations are
used to determine the precise boundaries of the near-duplicate segments for those asserted
candidates. Thus in the following subsections, we will present the algorithmic details about
the three processes.

2.2 Coarse-scale filtering with maximum weight matching

The objective of the coarse-scale filtering process is to rapidly select the candidate reference
videos from the database R for a given query Q. Note that the input data in this process are

the coarse-scale representations of Q and ∀R ∈ R. Here let Q(C) =
{
q1, q2, · · · , q

L
(C)
Q

}

and R(C) =
{
r1, r2, · · · , r

L
(C)
R

}
denote the coarse-scale representations of Q and R, where

L
(C)
Q and L

(C)
R are the numbers of frames in Q(C) and R(C).

Following the frame-level video matching paradigm, the coarse-scale filtering process
involves the following two steps:

(1) Frame similarity evaluation: This step is to calculate the similarity between every
query frame qi ∈ Q(C) and every reference frame rj ∈ R(C) using some audio-visual
features, and then return a list of top-T most similar reference frames (together with

their similarity scores) for each qi . Let L(C) =
{
L1,L2, · · · ,L

L
(C)
Q

}
, where Li =

Fig. 3 The flowchart of our MS-VSM approach
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{ri1, ri2, · · · , riT } is the list of similar reference frames linked to qi (T = 10 in our
experiments).

As mentioned above, the computational complexity is approximately

O
(
ρ|R|L(C)

Q L
(C)
R

)
, which can be further accelerated by using the indexing structure

of the features. For example, if we use SIFT Bag-of-Words (BoWs) as the feature
descriptor for each frame, SIFT BoWs for the coarse-scale frames of all reference
videos are pre-calculated offline and stored into an inverted index table. For each
qi ∈ Q(C), we can use all its SIFT BoW features to search the inverted index table so
as to obtain the matched features. Only two SIFT features mapped to the same word
and satisfied with some other additional conditions (e.g., with similar position, scale
and orientation) can be regarded as a match, while the similarity between two frames
is defined as the average percentage of the matches. As such, the computational
complexity of frame similarity evaluation can be remarkably reduced.

(2) MaximumWeight Matching (MWM): This step is to construct the candidate set CQ

as described in (1). Toward this end, we first group the most similar reference frames in
L

(C) according to the reference video ID, and then obtain a new list M(C) ={M1,M2,

· · · ,MJ }, where J is the amount of reference videos related to the query video Q(C),
and Mj consists of all similar frame pairs

{
(qs, rt ) | qs ∈ Q(C), rt ∈ R(C)

}
in which

all the reference frames come from R(C) ∈ R.

Thus the remaining problem is how to construct the candidate set CQ from M
(C). From

each Mj ∈ M
(C), we can obtain two corresponding segments respectively in Q(C) and

R(C) by checking their first and last frames in Mj . Without loss of generality, they are

denoted by S
(C)
Qj

and S
(C)
Rk

. Then the task becomes checking whether S
(C)
Rk

is potentially a

near-duplicate of S
(C)
Qj

. To address this problem, a simple method is to measure the average
frame similarity between the two segments. In this case, however, we cannot effectively
distinguish the similarity of two segments with one-to-one frame matchings from that of two
segments with one-to-many matchings. Thus a more reasonable solution is that the segment
similarity is not only dependent on the frame similarity, but also on the interrelationship
such as interference and granularity [32].

Toward this end, we apply the classical maximum weight matching (MWM) algorithm
to calculate the coarse-level similarity score between S

(C)
Qj

and S
(C)
Rk

under the one-to-one
frame matching constraint. Given a weighted bipartite graph, the MWM problem is to
find a set of vertex-disjoint edges with the maximum total weight. In general, the MWM
algorithm, by optimizing the total weight of matchings, is able to rank relevant segments
based on the similarity of visual and granularity. Let ω(qs, rt ) denote the frame similarity
between qs ∈ S

(C)
Qj

and rt ∈ S
(C)
Rk

, and m(qs, rt ) denote whether qs and rt are a matching
pair in Mj , then

Sim(S
(C)
Qj

, S
(C)
Rk

) = 1

Lj,k

max
∑

(qs ,rt )∈Mj

ω(qs, rt )m(qs, rt ),

s.t.
∑

rt

m(qs, rt ) = 1, for∀qs ∈ S
(C)
Qj

,

∑

qs

m(qs, rt ) = 1, for∀rt ∈ S
(C)
Rk

,

m(qs, rt ) ∈ {0, 1}, 0 � ω(qs, rt ) � 1. (5)
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where Lj,k = min{|S(C)
Qj

|, |S(C)
Rk

|}. Figure 4 illustrates the process of applying the MWM

algorithm to find a set of one-to-one matchings between S
(C)
Qj

and S
(C)
Rk

. Note that

Sim
(
S

(C)
Qj

, S
(C)
Rk

)
is just a result of that process.

In the process of obtaining of the CQ, we don’t use the whole frame level matching
information to filter but to use part of it to determine, this method improves the efficiency.
The computation complexity can be reduced from O((LQ + LR)(L + log(LQ + LR))) to

O
((

L
(C)
Q + L

(C)
R

) (
L + log

(
L

(C)
Q + L

(C)
R

)))
.

After calculating the coarse-level similarity for all Mj ∈ M
(C), we can apply (1) to filter

the irrelevant reference segments and construct the candidate set CQ. The whole coarse-
scale filtering process is described as Algorithm 1. Note that in the algorithm, we use the
operator “=” to denote the set assignment, and use the operator “←” to denote adding an
element to a set, and use Ø to denote an empty set.

Algorithm 1: Coarse-Scale Filtering with MWM

Input : - The query video

- The reference database

0 - The pre-defined threshold

Output: - The candidate set

1. Frame Similarity Evaluation
for do

most similar reference frames for ;

end

2. Filtering by MWM
Construct from ;

Ø;

for 1 do

Extract and from ;

Calculate using (5);

if 0 then

;

end

end

return .

2.3 Middle-scale refinement with constrained longest ascending matching
subsequence

After obtaining the candidate set CQ =
{(

S
(C)
Qj

, S
(C)
Rk

)}
, the next step is to further check

whether they are the near-duplicates or not, and if so, to roughly locate the positions of the
near-duplicate segments in both videos. This is mainly because the coarse-scale represen-
tation of a video cannot provide enough descriptive information for accurate near-duplicate
discrimination. Thus according to our assumption, this process will be performed on the
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Fig. 4 Illustration of applying the MWM algorithm to find a set of one-to-one matchings between S
(C)
Qj

and

S
(C)
Rk

. Note that the thicker a line between two frames, the larger the corresponding matching weight

middle-scale representations of Q and R, namely, Q(M) and R(M). Moreover, the map-
ping from the coarse-scale representation of a video (e.g., Q(C)) to the middle-scale one
(e.g., Q(M)) is strictly one-to-one. So the candidate set CQ can be directly represented as

CQ = {(S(M)
Qj

, S
(M)
Rk

)}.
According to (3), for ∀(S

(M)
Qj

, S
(M)
Rk

) ∈ CQ, the condition to determine whether D(S
(M)
Qj

,

S
(M)
Rk

) holds or not is that they have two subsequences whose lengths are both more than the
pre-defined value ζ1 and whose similarity is larger than the threshold θ1. In practice, we only
need to check their most similar subsequences. Toward this end, one possible solution is to
still use the MWM algorithm on S

(M)
Qj

and S
(M)
Rk

to find the subsequences with the optimal
one-to-one matchings. However, it is enough to use such subsequences to judge whether
two videos are potentially near-duplicates, but not to determine whether they are definitely
near-duplicates or not. This is because the matchings between them may be very sparse
(e.g., two matchings respectively in 1th and 100th frames). Moreover, the matchings in the
two subsequences should preserve the temporal order (e.g., in ascending order). This is
reasonable since two near-duplicate videos, even though they may suffer minor re-ordering
edits in temporal domain, should be locally consistent. Thus by taking the maximum weight,
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ascending and dense matching constraints in account, this study proposes a Constrained
Longest Ascending Matching Subsequence (CLAMS) algorithm.

Traditionally, the longest common subsequence (LCS) problem is to find the longest
subsequence common to all sequences (often just two sequences). Note that LCSs are not
required to occupy consecutive positions within the original sequences. When applied in
our problem settings, due to the probabilistic property of a matching between two frames,
there are potentially a large number of LCSs between two video sequences. Thus we can
also introduce the maximum weight matching constraint to the LCS problem, and mean-
while also apply the ascending matching constraint to further preserve the temporal order
of matchings. In this study, we called the LCS with Maximum Weight and Ascending
Matchings as the Longest Ascending Matching Subsequence (LAMS).

Definition (Longest Ascending Matching Subsequence, LAMS). Given two videos
X={x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, let ω(xi, yj ) denote the frame similarity
between xi ∈ X and yj ∈ Y where 0� ω(xi, yj ) �1, and m(xi, yj ) be a boolean value to
indicate whether xi and yj are a matching (i.e., m(xi, yj ) ∈ {0, 1}), then the LAMS of X

and Y , denoted by Γ (X, Y ) = {(x∗
k , y∗

l ), . . . , (x∗
s , y∗

t )}, is defined as follows:

Γ (X, Y ) = argmax
∀(T ∗

X,T ∗
Y )∈	

∑

x∗
i ∈T ∗

X,y∗
j ∈T ∗

Y

[ω(x∗
i , y∗

j )m(x∗
i , y∗

j )], (6)

where

	 = {(T ∗
X, T ∗

Y )} = argmax
∀TX⊆X,∀TY ⊆Y

L(TX, TY ),

s.t.a)1 � i′ < o′ . . . � m and 1 � j ′ < p′ . . . � n

f or {. . . , (xi′ , yj ′), . . . , (xo′ , yp′) . . . } ⊆ (TX, TY ),

b)
∑

xj ′
m(xi′ , yj ′) = 1 and

∑

yi′
m(xi′ , yj ′) = 1

for ∀(xi′ , yj ′) ∈ (TX, TY ). (7)

Here L(TX, TY ) denotes the matching length between two subsequences of X and Y

(denoted by TX and TY ). Note that (7) is to find a set of longest matching subsequences
between X and Y with one-to-one ascending matchings, then (6) is to select the one with
the maximum total weight from them. In (7), the first condition expresses the ascending
matching constraint, while the second one indicates that every matching pair in (TX, TY )

should be an one-to-one matching (i.e., for ∀(xi′ , yj ′) ∈ (TX, TY ), the indexes i′ and j ′ can
appear only once). For simplicity, we also introduce an operator ≺. For two matching pairs
(x∗

k , y∗
l ) and (x∗

o , y∗
p), if k < o and l < p, then we have (x∗

k , y∗
l ) ≺ (x∗

o , y∗
p). As such,

Γ (X, Y ) can be viewed as a special case of the longest increasing subsequences (LIS).
It is easy to apply this definition in our problem settings so as to find the optimal

LAMS between S
(M)
Qj

and S
(M)
Rk

. The first half part of Algorithm 2 illustrates the proce-
dure (as shown in the upper part of Fig. 5): In the initialization stage, we need to evaluate
the frame similarity between S

(M)
Qj

and S
(M)
Rk

, and then construct a set of matching frames

M
(M) =

{
(qs, rt ) | qs ∈ S

(M)
Qj

, rt ∈ S
(M)
Rk

}
by selecting at most T similar frames for each

query frame (T = 10 in the experiments). Then we will calculate the lengths for potential
LAMSs in (S

(M)
Qj

, S
(M)
Rk

) by using dynamic programming. Let Ls,t denote the length of a
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Fig. 5 Illustration of applying the CLAMS algorithm to find two most similar segments between S
(M)
Qj

and

S
(M)
Rk

potential LAMS that is ended with (qs, rt ) and Ws,t be the weight score of (qs, rt ). In order
to calculate the value of Ls,t , we traverse all the matching pairs in M

(M) and check whether
∃(qs′ , rt ′) ∈ M

(M) that can meet the condition Ls,t + 1 > Ls′,t ′ , where (qs, rt ) ≺ (qs′ , rt ′).
If so, we can update Ls′,t ′ with Ls,t + 1 and the corresponding weight score Ws′,t ′ of
(qs′ , rt ′) with Ws,t +ω(qs′ , rt ′). At the same time, we need to update Ps′,t ′ with (s, t), where
Ps′,t ′ records the previous matching pair index of (s′, t ′) in the potential LAMS; otherwise,
if Ls,t + 1 = Ls′,t ′ and Ws,t +ω(qs′ , rt ′) > Ws′,t ′ , we also need to update the weight score
Ws′,t ′ with Ws,t + ω(qs′ , rt ′) and Ps′,t ′ with (s, t). For simplicity, we define the operator
Φ(s′, t ′, s, t) as follows:

Φ(s′, t ′, s, t) :
{

Ps′,t ′ = (s, t),

Ws′,t ′ = Ws,t + ω(qs′ , rt ′).
(8)
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After calculating the values Ls,t and Ws,t that correspond to every matching pair (qs, rt )

in M
(M), we can find (qs∗ , rt∗) with the maximal values of both Ls∗,t∗ and Ws∗,t∗ . Then

the subsequence with (qs∗ , rt∗) as its end position will be selected as the optimal LAMS of
(S

(M)
Qj

, S
(M)
Rk

).

After getting the optimal LAMS between S
(M)
Qj

and S
(M)
Rk

, we need to further apply the
dense matching constraint. In this study, we refer to the densest matching subsequence
of a LAMS as the Constrained LAMS (CLAMS for short). Intuitively, for a matching
(qs, rt ) ∈ Γ , we need to calculate its denseness scores with respect to its previous and
next matchings in Γ (denoted by (q←−

s , r←−
t
) and (q−→

s , r−→
t
) respectively) so as to determine

whether it belongs to some dense matching subsequence or not. In out study, such denseness

scores are measured by two Euclidean distances
←−
D and

−→
D ,

←−
D s,t =

√
[t (qs) − t (q←−

s )]2 + [t (rt ) − t (r←−
t
)]2,

−→
D s,t =

√
[t (q−→

s ) − t (qs)]2 + [t (r−→r ) − t (rt )]2, (9)

where the function t (x) denotes the corresponding timestamp of the keyframe x. Note that←−
D s,t = INF for the first matching in Γ and

−→
D s,t = INF for the last matching. In prac-

tice, for Γ , we only need to calculate
←−
D s,t or

−→
D s,t totally by (|Γ | − 1) times because←−

D s,t = −→
D ←−

s ,
←−
t

if (qs, rt ) is a non-first matching and
−→
D s,t = ←−

D −→
s ,

−→
t

if (qs, rt ) is a non-last
matching.

Let Λ denote the current dense matching subsequence and (qs, rt ) ∈ Γ be the matching
under consideration, then we can use the following rules to update Λ:

⎧
⎪⎨

⎪⎩

Λ = Ø, if
−→
D s,t > τ and

←−
D s,t > τ ;

Λ = {(qs, rt )}, if
−→
D s,t � τ and

←−
D s,t > τ ;

Λ ← (qs, rt ), otherwise.

(10)

where τ be a pre-defined denseness threshold (τ = 7 in our study). That is, if
−→
D s,t > τ and←−

D s,t > τ (i.e., (qs, rt ) is an isolated matching in Γ ), then Λ should be an empty sequence;

if
−→
D s,t � τ and

←−
D s,t > τ , then (qs, rt ) should be the first matching in Λ; otherwise, Λ

is currently not an empty sequence and thus (qs, rt ) should be added into Λ. In particular,

if
←−
D s,t � τ and

−→
D s,t > τ , (qs, rt ) should be the last matching in a dense matching

subsequence Λ. In this case, we should further check whether |Λ| is larger than the length
of Γ ∗ or not, where Γ ∗ is the dense matching subsequence that has been already obtained.
If so, Γ ∗ should be updated with Λ. This process is illustrated in the third step in Algorithm

2 (as shown in the lower part of Fig. 5). For simplicity, we use
←−
D and

−→
D instead of

←−
D s,t

and
−→
D s,t in the algorithm.

The CLAMS algorithm is only calculated on part of the matching frame pairs between
the query video sequence and the reference video sequence, so the procedure has relatively
high efficiency.



Multimed Tools Appl

Algorithm 2: The CLAMS Algorithm at the Middle Scale

Input

Output

:

:

M M
- A candidate near-duplicate pair.

M M
- The CLAMS of

M M
.

1. Initialization:
M Ø;

for
M

do
M

is among top- most similar

frames in
M

for ;

Sort
M

in ascending order by
M

;

M M
;

end

2. Find the optimal LAMS

M

M
:

0 1 Ø for M ;

for M do

do

Let be the subset of after ;

if 1 then

;

end

for

if 1 then

1;

end

else if 1 & then

end

end

end

argmax ,

where argmax M ;

Obtain
M M

by backtracking from ;

3. Calculate the CLAMS
M M

:

M M
Ø;

for
M M

do

INF;

Calculate and/or for ;

Update using (10);

if & &
M M

then

M M
;

end

end

return
M M

.

M

;

;
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After obtaining Γ ∗(S(M)
Qj

, S
(M)
Rk

), we can use (3) to check D
(
S

(M)
Qj

, S
(M)
Rk

)
, and further

determine whether D(Q,R) holds or not (recalling that D
(
S

(C)
Q , S

(C)
R

)
= 1).

2.4 Fine-scale localization with bi-directional scanning

If it is asserted that D(Q,R) = 1, the remaining problem is to determine the precise loca-
tions of the near-duplicate segments in Q and R. This will be done at the fine scale because
the fine-scale representation can provide a more detailed view about a video, consequently
enabling much better localization precision. As mentioned in Section 2.1, the basic idea of
this localization process is to find the longest near-duplicate segments in Q(F) and R(F) that

are with the asserted
(
T

(M)
Q , T

(M)
R

)
= Γ ∗

(
S

(M)
Qj

, S
(M)
Rk

)
as their center.

As said by (4), we need to carry out bi-directional scannings (including forward and
backward scanning operations) in Q(F) and R(F). During the processes of forward and back-
ward scannings, the sliding window is used to iteratively scan Q(F) and R(F) simultaneously.
Moreover, the forward and backward scanning operations can be performed independently.
Take the backward scanning as the example. The operation of backward scanning in Q(F)

starts from the beginning position of T
(M)
Q , or equivalently T

(F)
Q at the fine scale. At each

iteration, the sliding window moves backward with the step length of �t ; meantime, the
backward scanning in R(F) starts from the beginning position of T

(F)
R and also moves back-

ward with the step length �t . Without loss of generality, we use δ
(F)−
Qk

and δ
(F)−
Rk

denote the

windowed segments of Q(F) and R(F) at the kth iteration of backward scanning. Then we
can use the MWM algorithm (i.e., similar to (5) except using the fine-scale representation)

to calculate the segment similarity between δ
(F)−
Qk

and δ
(F)−
Rk

, namely, Sim
(
δ
(F)−
Qk

, δ
(F)−
Rk

)
.

If Sim
(
δ
(F)−
Qk

, δ
(F)−
Rk

)
is lower than the threshold θ2, the backward scanning process will

be terminated. Finally, the segment that starts from the terminal position to the start posi-
tion in Q(F) during the backward scanning process can be considered as �S

(F)−
Q , while the

segment starts from the terminal position to the start position in R(F) can be considered as
�S

(F)−
R . Similarly, in the forward scanning process, we can obtain �S

(F)+
Q and �S

(F)+
R .

After getting �S
(F)−
Q , �S

(F)−
R , �S

(F)+
Q and �S

(F)+
R , we can then determine the scope of

near-duplicate segments (SQ, SR) between Q and R:

SQ = �S
(F)−
Q �� T

(F)
Q �� �S

(F)+
Q ,

SR = �S
(F)−
R �� T

(F)
R �� �S

(F)+
R , (11)

where the operator �� denotes the sequence concatenation operation. Note that the similarity
between SQ and SR , namely, Sim(SQ, SR), can also be calculated by the MWM algorithm.
Often, this similarity score can be used for the final result ranking.

3 Experiments

In this section, we evaluate the effectiveness of the proposed MS-VSM by comparison with
several state-of-the-art methods.
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3.1 Experiment settings

The most widely-used benchmark datasets are adopted in our experiments, including
MUSCLE-VCD-2007 and CC WEB VIDEO.

MUSCLE-VCD-2007 [20] contains a reference database of 101 raw videos (about 100
hours) collected from various resources and two query video sets (i.e., ST1, ST2) of 15 and
3 videos transformed from some reference and non-reference videos. Only visual transfor-
mations such as camcording, subtitles, reencoding, crop ang change of color were used to
generate the query videos. The objectives of ST1 and ST2 are slightly different: ST1 is to
determine whether a query is a near-duplicate of some reference video in the database, while
ST2 is to localize the near-duplicate segments with the starting and ending timestamps. For
the ST1 task, Quality (Q) is calculated as the percentage of correct answers; while for ST2
task, two metrics, QualitySegment (QS) and QualityFrame (QF), are adopted to assess the
detection correctness and localization accuracy of near-duplicate segments respectively.

QS = TPseg − FAseg

Nseg

(12)

QF = 1 − FMiss

FTotal
(13)

where TPSeg (or FASeg) is the number of correctly-matched (or mismatched) video seg-
ments, NSeg is the total number of segments in all queries, FMiss denotes the number of
mismatched frames, while FTotal is the total number of frames in all queries.

CC WEB VIDEO [43] contains totally 12,790 Web video clips that can be divided into
24 groups. All videos were collected from YouTube, Google Video and Yahoo! Video,
often with low video quality. For each group, one video is selected as the query video,
while the others are regarded as “near-duplicate” or “irrelevant” in the ground-truth. Note
that these near-duplicate videos were typically generated by applying transformation of
format conversion, encoding parameters change, photometric variations (e.g. color, bright-
ness changes), editing operations (e.g. logo insertion and border adding) and content
modifications on the original videos. According to the dataset evaluation protocol, the
precision-recall curve is used to assess the performance, where precision and recall are
calculated as follows [4]:

Precision = TP

TP + FP
, (14)

Recall = TP

TP + FN
. (15)

Here true positive (TP) stands for the number of correct identifications in the whole positive
samples, false negative (FN) indicates the number of positive samples which are mistaken
as negatives, while false positive (FP) signifies the count of negative examples erroneously
assumed to be as positives. Moreover, the performance can also be evaluated by another
metric - mean average precision (MAP) [9]:

MAP(Q) = 1

|Q|
|Q|∑

j=1

1

mj

mj∑

k=1

k

γk

, (16)
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where the set of relevant videos for Qj ∈ Q is {R1, · · · , Rmj
}, mj is the number of its

relevant videos, and γk is the rank of the kth retrieved relevant video.

3.2 Implementation details

In practice, the implementation of the MS-VSM method is mainly related to two issues,
namely, the preprocessing and audio-visual feature extraction.

Preprocessing One of the most important preprocessing operations is to extract keyframes
to derive the multiscale representation of a video. As mentioned in Section 2.1, the sampling
rate at the fine scale is 10:1 if the frame rate of a video X is 30fps. That is, visual keyframes
are obtained for the fine-scale representation X(F) by uniformly sampling its visual com-
ponent at a rate of 3fps. This can effectively avoid the error caused by the different frame
rates of videos. Then its middle-scale representation X(M) can be generated from X(F) at the
sampling rate of 5:1, while its coarse scale representation X(C) can be derived from X(M)

at the sampling rate of 3:1. As such, for an one-minute video sequence X with the frame
rate of 30 fps, the frame numbers of X(F), X(M) and X(C) are 180, 36, and 12, respectively.
Obviously, this keyframe extraction is very simple and computationally efficient.

For the dataset who contains audio component in each video or which involves audio
transformations in generating near-duplicates, we also need to extract audio frames for each
video. It should be noted that the extracted audio frames or keyframes should be aligned
with the corresponding visual frames or keyframes. To do so, in our study, an audio frame
with a length of 0.37 seconds is extracted from the audio signal for every interval of 11.6
milliseconds. Meanwhile, the overlap factor of two consecutive audio frames is set to 31/32.
Thus for an one-minute video segment, about 5,120 audio frames can be extracted, which
roughly correspond to 180 visual frames. From such a fine-scale representation, we can
still follow the sampling rate of 5:1 and approximately 3:1 to derive its middle-scale and
coarse-scale representations.

Picture-in-picture (PiP) detection is also performed in the preprocessing step. Instead of
using a simple Hough-transform-based method, we use a recently-proposed PiP detection
method [33] that introduces the spatio-temporal slicing to establish the probability measure-
ment of the corresponding edge surface and then uses an optimization algorithm to refine
vertical and horizontal edge lines. For queries with PiP, the foreground and non-foreground
key-frames will be processed respectively to check whether the corresponding videos are
copies. In addition, queries asserted as non-copies will be flipped and matched again to deal
with flip transformation.

Feature extraction In the implementation, we use SIFT [28, 29] as the visual feature and
then apply the BoW technique to convert each SIFT descriptor into a visual word (1000
words generated from the flickr 1M dataset). Meanwhile, the position in the 2×2 partition
of the image, scale (large vs. small), and orientation (quantized into 12 bins) are also taken
into account. Only two SIFT features mapped to the same word and with similar position,
scale and orientation can be regarded as a match. For all reference videos, SIFT BoWs are
stored into an inverted index table for quick matching.

For audio feature, this implementation uses a robust audio fingerprint (AFP) proposed
in [13]. AFP extracts a 32 bit sub-fingerprint for each audio frame by calculating energy
differences along the frequency and time axes. Like [13], the bit errors are used to measure
the similarity between two AFPs, and all the AFPs for reference videos are organized in
a hash lookup table for quick search. For multimodal feature fusion, we adopt the simple
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result fusion strategy [31, 41] for near-duplicate detection, since it is beyond the focus of
this study. That is, we utilize a set of audiovisual features to construct several detectors and
then derive the final result by fusing the detection results from these detectors.

3.3 Experimental results on the MUSCLE-VCD-2007 dataset

This experiment was designed to evaluate the performance of the proposed MS-VSM on
the MUSCLE-VCD-2007 dataset. As mentioned above, the video quality in this dataset
is relatively good. Thus many existing methods (e.g.,[44]) can achieve very promising
near-duplicate detection and localization results. By comparison, several state-of-the-art
results on this dataset were cited directly from the literature, including Anguera2009 [1],
Tan2009 [40], Cui2010 [7], Yeh2011 [46], Zheng2011 [48], Ren2012 [34], Kim2014 [18]
and Wu2014 [44].

Note that in this dataset, only the detection accuracy of the top-1 result should be eval-
uated in the ST1 task (in terms of Q), while both the detection accuracy and localization
precision should be evaluated in the ST2 task (in terms of QS and QF). Table 2 shows the
experimental results. In the ST1 task, many methods, including our MS-VSM, achieved
excellent detection performance, with Q of 1.0. This means they could correctly detect all
near-duplicates on the ST1 set. While in the ST2 task, the MS-VSM, also showed signifi-
cant advantage. These results are even better than the most-recent results in Wu2014 which

Table 2 Comparison on the
MUSCLE-VCD-2007 dataset Method ST1 ST2

Q QS QF

ADV 86% 33% 17%

IBM 86% − −
CITYU 66% 86% 76%

CAS 53% − −
GOS 83% − −
SSM 100% − −
Yeh2009 93% − −
Poullot 93% − −
Zheng 100% 90% 85%

SSBelt CE 100% 95% 90%

SSBelt LBP 100% 95% 90%

Cui 100% 86% −
Yeh2011 93% 86% −
Anguera 100% − −
Tan 100% 90% 82%

Yeh2009 86% − −
Jiang 100% − −
Kim 93% 86% −
Ren 93% 93% −
TASC 100% 100% 97.7%

MS-VSM 100% 100% 90.54%
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obtained 0.9 QS and 0.9 QF. These results demonstrate that the proposed MS-VSM exhibits
almost perfect near-duplicate detection and localization performance on this benchmark
dataset, with very high processing efficiency.

3.4 Experimental results on the CC WEB VIDEO dataset

This experiment was to evaluate the performance of the MS-VSM on the CC WEB VIDEO
dataset. The videos in this dataset were all collected from the Internet, thus the video quality
is rather low and the used transformations can also be widely found in other Internet videos.
Therefore, this experiment can verify whether the proposed MS-VSM could be used in the
large-scale online video deduplication applications.

On this dataset, given a query video, the MS-VSM should retrieve all duplicate and
near-duplicate videos. Then the performance is evaluated in terms of MAP and precision-
recall curve. In this case, the fine-scale localization process should not be performed. For
comparison, some state-of-the-art results were also collected from the literature, includ-
ing Wu2007 [43], Shang2010 [36], Liu2011 [26], Cai2012 [2], Zhou2012 [49], Song2013
[39] and Wu2014 [44]. Note that Liu2011 did not provide its MAP result while Cai2012
did not provide its precision-recall data. Thus they were excluded in the corresponding
comparisons.

We evaluated the effectiveness for near-duplicate video retrieval on the CC WEB VIDEO
dataset by using Precision-Recall curve. Figure 6 illustrates the results for the compared
methods. We can see that the MS-VSM can obtain the precision of more than 90% even
when the recall reaches 95%. This is consistent with the multiscale sequence match-
ing mechanism, which enables the MS-VSM to preferably find more results under the
prerequisite of keeping as high detection accuracy as possible.

Table 3 gives a comparison with respect to the overall detection accuracy. In Table 3,
the MAP column refers to the Mean Average Precision of the 24 queries. We can see that
the MAP of the MS-VSM is better than the other state-of-the-art results. This result is
consistent with the results shown in Fig. 6. It should be also noted that, the MS-VSM is also
computationally efficient on this dataset. These results show that the proposed MS-VSM is
capable to effectively and efficiently cope with the large-scale online video deduplication
tasks.

Fig. 6 CC WEB VIDEO Precision-Recall curves
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Table 3 MAP on
CC WEB VIDEO Method MAP Method MAP

STF CE 0.95 SSBelt CE 0.92

STF LBP 0.953 SSBelt LBP 0.922

SIG CH 0.892 TASC 0.9857

HIRACH 0.952 SEQ 0.8852

OM 0.91 DTW 0.9136

MFH 0.954 DP 0.9009

ASVT 0.956 G-MFH 0.9582

Cai 0.918 PD 0.8853

Song 0.958 PI-tree 0.9405

Su 0.958 MS-VSM 0.9647

4 Conclusion

In this paper, we introduce a novel multiscale video sequence matching algorithm MS-
VSM which uses multiscale sequence matching to determine whether two video sequences
contains near-duplicate segments. The proposed algorithm shows good performance. In the
future research, we will improve our algorithm with adaptive threshold.
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