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Abstract—Person re-identification (Re-ID) poses an inevitable
challenge to deep learning: how to learn a robust deep model with
millions of parameters on a small training set of few or no labels.
In this paper, two deep transfer learning methods are proposed
to address the training data sparsity problem, respectively from
the supervised and unsupervised settings. First, a two-stepped
fine-tuning strategy with proxy classifier learning is developed
to transfer knowledge from auxiliary datasets. Second, given an
unlabelled Re-ID dataset, an unsupervised deep transfer learning
model is proposed based on a co-training strategy. Extensive
experiments show that the proposed models achieve a good
performance of deep Re-ID models.

Index Terms—Person Re-ID, Deep Transfer Learning, Unsu-
pervised Learning

I. INTRODUCTION

Person re-identification (Re-ID) is the problem of matching
people across non-overlapping camera views, which typically
arises in a surveillance application. Despite the best efforts
from the computer vision researchers, it remains an unsolved
problem [1]. Earlier works focus on either designing view-
insensitive feature representations [2], [3], or learning an
effective distance metric [4], [5], or both [6]. Recently, deep
Re-ID models started to attract attention [7], [8].

Given insufficient training samples, transferring feature rep-
resentations learned from a larger auxiliary dataset becomes
critical. Indeed, transfer learning has been considered in most
existing deep Re-ID works. In particular, given a small Re-
ID dataset with only a few hundreds of labelled identities,
existing models are typically pretrained on larger auxiliary Re-
ID datasets followed by fine-tuning on the target set. However,
the domain gaps between different Re-ID datasets are typically
large due to the often drastically different camera viewing
conditions. As a result, models that adopt this one-stepped
fine-tuning strategy would often gain only limited performance
improvements with a possibility of even inducing negative
transfer [1].

In this work, we aim to address the problem of lacking
labelled training data in Re-ID by proposing two deep transfer
learning methods. The first method is a two-stepped fine-
tuning strategy based on proxy classifier learning, which is
designed for situations where a small number of labelled
training data are available. Specifically, we formulate a deep
Re-ID network based on GoogLeNet [9] with an identity clas-
sification loss and a verification loss to learn a discriminative
feature representation.
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The second proposed deep transfer learning method is
designed for unsupervised deep Re-ID. Transfer learning
from labelled source data to unlabelled target data is an
unsupervised (by ‘unsupervised’, we mean target-unsupervised
domain adaptation, a definition adopted by [10]–[12]) domain
adaptation problem which is still an open problem for deep
models and has not been attempted by existing deep Re-ID
works. In this paper, a novel co-training based unsupervised
transfer learning model is proposed. We show that such a
deep/non-deep hybrid co-training framework can effectively
prevent model drift and yield Re-ID performance that is better
than most existing supervised deep Re-ID models.

Finally, our models achieve a good performance of deep
Re-ID models: Rank-1 accuracy of 85.4%, 83.7% and 56.3%
on CUHK03, Market1501, and VIPeR respectively; and our
unsupervised model rank-1 accuracy 45.1% on VIPeR.

II. RELATED WORK

Deep Re-ID models Existing deep Re-ID models [7], [8],
[13]–[15] differ significantly in their network architectures,
which are largely determined by the training objectives/losses.
Specifically, most existing works cast the Re-ID problem as a
deep metric learning problem and employ pairwise verification
loss [13], [15] or triplet ranking loss [7], [14], or both [16].
Correspondingly the overall network architecture is a Siamese
CNN network with either two or three branches for the
pairwise or triplet loss respectively.
Deep transfer learning Transfer learning or domain adap-
tation is an extensively studied topic [17]. Transfer learning
is widely used for deep learning when a target task is short
of labelled data. The most common deep transfer learning
strategy is fine-tuning [18]. A systematic study is presented
in [18] which examines how transferable the feature outputs
of different layers are between the source and target domains.
It concludes that the generalisation ability diminishes when the
discrepancy between the source and target domains increases.
Deep unsupervised domain adaptation In theory, any un-
supervised deep learning methods can be applied for un-
supervised domain adaptation. Recently a number of deep
unsupervised transfer learning models are proposed [11], [12]
which aim to align the data distributions of different domains.
Nevertheless, the domain gap between different Re-ID datasets
is significant and cannot be overcome by just aligning the data
distributions, making them less effective than the proposed
model, as demonstrated in our experiments (see Sec. V-C).
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Fig. 1. The proposed deep Re-ID network architecture.

Our contributions are as follows: (1) A two-stepped fine-
tuning with proxy classifier learning is developed for super-
vised deep transfer learning. (2) A co-training based unsuper-
vised domain adaptation method is proposed for unsupervised
deep Re-ID. (3) Comprehensive evaluations are presented to
provide insights regarding how to design the optimal network
architecture and learning objectives to facilitate deep transfer
learning.

III. DEEP RE-ID MODEL

A. Network Architecture

Overview The overall network architecture of the proposed
deep Re-ID model is illustrated in Fig. 1. The model has two
training objectives/losses: an ID classification loss and a pair-
wise verification loss. As a result, the network contains three
parts (see Fig. 1): a base network shared by the two branches,
an ID classification subnet, and a pairwise verification subnet.
The two main branches of the network have the same base
network architecture and share their parameters, hence the
name Siamese. After feature vectors are computed for the
input images using the base network, the pairwise verification
subnet takes a pair of features and learn to distinguish whether
they come from the same person or not. In the meantime, the
person ID classification subnet learns to classify each feature
output of the base network into a class corresponding to the
input image person ID.
Base network The classification subnet learns a softmax
person ID (SID) classifier with a cross-entropy loss that
distinguishes different people from each other. The pairwise
verification (PV) subnet first takes two feature vectors yi and
yj as input. They are first fused with element-wise subtraction.
Subsequently, the difference vector is multiplied by a random
dropout mask rv and then passed to a rectified linear unit
(ReLU). After a fully connected (FC) layer, the last layer of
the verification network is a softmax layer with two output
nodes, corresponding to whether or not the input image pair
contains the same person. Let Ψ0(x, x′) and Ψ1(x, x′) be the
functions learned by the network in the two nodes, where x
and x′ are the input images. In the training stage, the negative
log-likelihood is used as a cost function J .

Once trained, we pre-compute the output vector of the base
network φ(xg) for each gallery image xg; and when any probe

xp comes in, we compute its feature output φ(xp) and calculate
its distance to xg by:

Dist(xp, xg) = ||φ(xp)− φ(xg)||2 (1)

which is about three magnitudes faster in our model than
entering the verification subnet and computing the softmax
score as the distance.

IV. DEEP TRANSFER LEARNING FOR RE-ID

A. Supervised Transfer Learning

Coping with large domain discrepancy Two scenarios are
typically considered in Re-ID under the supervised setting: (1)
The target Re-ID dataset is ‘large’, i.e. having more than 1,000
identities, for instance CUHK03 [19] and Market1501 [20],
and (2) it is ‘small’ with less than 1,000, e.g. VIPeR [21].
Specifically, for large Re-ID datasets, our model is pretrained
on ImageNet and then fine-tuned, whilst for smaller datasets,
one more stage of fine-tuning from large to small Re-ID
datasets is performed. In both scenarios, the classification
subnet is problematic because the source classification task and
the target one have completely different class labels (object
categories vs. person IDs, or different sets of person IDs).
This means that the classification subnet has to be initialised
randomly. This would inevitably generate a great deal of
noisy gradients, which after being back-propagated to the base
network will generate ‘garbage gradients’ that could derail the
model adaptation.
Two-stepped fine-tuning with proxy classifier learning
Suppose we have a large source Re-ID dataset S and a small
target dataset T with Ns and Nt unique person identities
respectively. Given an initial model trained using S, our goal
is to transfer the learned feature representation from S to
T . Formally, we need to learn the base network’s mapping
function φt and an identity classifier ft such that:

< φt, ft >= arg max
φ,f

EX,l∼ptp(L|X, φ, f) (2)

where pt is the target data distribution and p(L|X, θ, f) de-
notes the probability distribution learned by our model. Using
the architecture described in Sec. III-A we first learn a base
network φs and its corresponding ID classifier fs on S. During
domain adaptation, fs cannot be re-used because the Ns source
and Nt target identities have no overlapping. The original Ns-
nodes classifier layer thus has to be replaced with a randomly
initialised one with Nt nodes, which we denote as fr. From
fr, we first learn a proxy classifier fproxy from T but with
the mapping function φs:

fproxy = arg max
f

EX,L∼ptp(L|X, φs, f). (3)

fproxy is thus designed as a bridge (proxy) between the source
and target domain. After fproxy has been learned, in the second
fine-tuning step, the whole network is updated (i.e. both φt and
ft), but we limit the parameter updating of f to small steps so
that the proxy classifier fproxy acts as a regulariser to estimate
the final φt and ft.



Algorithm 1 Pseudo Label Generation
Input: Training image set X = {xa

1 , ..., xa
Ma
, xb

1, ..., xb
Mb

}, base
network φs, hyper parameter K
Output: Pseudo label set L = {la1 , ..., laMa

, lb1, ..., l
b
Mb

}
1: For each li ∈ L do:
2: li = ∅;
3: Compute feature representation R = {φs(xb

1), ...φs(xb
Mb

)};
4: For each xa

i ∈ X do:
5: Compute φs(xa

i ) ;
6: lai = {i};
7: Calculate the KNN set Ni of φs(xa

i ) in R;
8: For each φs(xb

i ) ∈ Ni do:
9: lbi = lbi ∪ {i};

B. Unsupervised Transfer Learning

Now the Mt target training images of an unknown number
of identities are unlabelled. For simplicity of symbols, we
assume that they are collected from two camera views denoted
as A and B respectively. Let’s denote the training set as
X = {Xa,Xb}, where Xa = {xa1 , ..., xaMa

} contains Ma

images in view A, while Xb = {xb1, ..., xbMb
} for the Mb

images in view B; we thus have Mt = Ma + Mb. For
each image x, an D-dimensional feature vector y = φs(x)
is computed by the base network learned using the source
dataset S. We wish to learn a better network using T with Mt

unlabelled images yielding an updated mapping function φt.
Semantic bootstrapping with pseudo labels A simple so-
lution to the unsupervised transfer learning problem is to use
the supervised two-stepped fine-tuning method described in
Sec. IV-A but with pseudo labels. The generation process of
pseudo labels is detailed in Algorithm 1. Specifically, for each
of the Ma images from camera A xai ∈ Xa, we assign it with a
unique identity label. After that, each of the Mb images from
camera B is assigned with the same label as its K-nearest
neighbour (KNN) from A based on ||φs(xai )−φs(xbj)||2. With
these pseudo labels, a semantic bootstrapping strategy [22] is
used to train the deep model, in which the base network will
produce an updated mapping function φ̃ which will again be
used to generate another set of pseudo labels for retraining
using Algorithm 1 with φs replaced by φ̃.
Solving the model drift problem by co-training In par-
ticular, pseudo labels that generated by Algorithm 1 clearly
do not correspond to the real identity labels: For a start, there
could be multiple images per person in each camera, so there
are less than Ma identities; second, the KNN can only give
a visually similar person which by no means is always the
same person. These pseudo labels are thus highly noisy. Model
drift is thus a big problem: The errors in the soft labels will
be propagated with the iterations and quickly magnified. To
address the issue of model drift, co-training [23], [24] is used
in our model. It was first designed for using the same model
with two sufficient and yet conditionally independent views
(feature representations) as inputs to label some unlabelled
instances for each other [23]. Since in most problem settings
such views do not exist, in practice one often has a co-training
style algorithm whereby two different models with the same

features or even same model with same feature but different
parameter settings are used [24]. The key is that both models
need to be effective and importantly complementary to each
other.

In our case, we have already got the semantic bootstrapping
deep CNN as one of the two unsupervised models. The other
model needs to be both effective on its own and complemen-
tary. To this end, we choose a graph regularised subspace
learning model [25], [26]. Such a model aims to learn a
discriminative subspace where the data distribution is smooth
with regard to a KNN graph constructed in the input feature
space. In such a learned subspace, data clusters can be formed
to provide the pseudo labels for the semantic bootstrapping
deep model. In the meantime, it uses the deep model learned
feature vector y = φ(x) as model input as well as to construct
the graph for regularisation.

Formally, given our pretrained deep Re-ID model, we
obtain a feature matrix from the base network output Y =
[Ya, Yb] ∈ RD×Mt , where Ya = [ya1 , ... ,y

a
Ma

] ∈ RD×Ma

and Yb = [yb1, ... ,y
b
Mb

] ∈ RD×Mb . We aim to learn a
subspace defined by a dictionary D and a new representation
Z in the subspace. D and Z can be estimated jointly by solving
the following optimisation problem:

(D∗,Z∗) = min
D,Z
‖Y−DZ‖2F +λΩ(Z) s.t. ‖di‖22 ≤ 1, (4)

where the first term is the reconstruction error evaluating
how well a linear combination of the learned atoms can
approximate the input data, and ||.||F denotes the matrix
Frobenious norm. Ω(Y) is the graph regularisation term that
is weighted by λ:

Ω(Z) =
∑
ij

Wij‖zi − zj‖22. (5)

where the graph is encoded by an affinity matrix W ∈
RMt×Mt for Mt data points where Wi,j 6= 0 only when yi
and yj are from two different camera views and are nearest
neighbours. With the learned new representation Z, we can
generate pseudo labels for the unlabelled target data, that is,
the cross-view nearest neighbours are obtained by ||zai − zbj ||2
instead of ||φ(xai )−φ(xbj)||2. With these pseudo labels, another
round of semantic bootstrapping of the deep model is carried
out and the updated base network then produces input vectors
and a new graph for the subspace learning model. This
iterative process normally converges after 2-3 iterations in our
experiments.

V. EXPERIMENTS

A. Datasets

Five widely used datasets are used including two large
datasets (CUHK03 [19] and Market1501 [20]) and three small
ones (VIPeR [21], PRID [27] and CUHK01 [28]).

B. Supervised Transfer Learning

Results on large datasets On the two large Re-ID datasets,
namely CUHK03 and Market1501, transfer learning using
our model takes place between ImageNet (ILSVRC 2012)



Manual Detected
DNS [5] 62.5 54.7
LSSCDL [29] 57.0 51.2
Siamese LSTM [30] - 57.3
EDM [15] 61.3 52.0
Joint Learning [16] - 52.1
CAN [14] 65.7 63.1
Ours 85.4 84.1

TABLE I
SUPERVISED RESULTS (RANK 1 MATCHING ACCURACY IN %) ON THE
CUHK03 DATASET. ‘-’ MEANS NO REPORTED RESULT IS AVAILABLE.

Single query Multi-query
R1 mAP R1 mAP

SCSP [4] 51.9 26.3 - -
DNS [5] 61.0 35.6 71.5 46.0

Siamese LSTM [30] - - 61.6 35.3
Gated S-CNN [13] 65.8 39.5 76.0 48.4

CAN [14] 48.2 24.4 - -
Ours 83.7 65.5 89.6 73.8

TABLE II
SUPERVISED RESULTS ON MARKET-1501

and the target Re-ID dataset. The results of our model are
compared with the state-of-the-art deep and non-deep Re-ID
models in Table I and Table II respectively (they are grouped
together in the tables). Due to space limit, only the most
competitive ones since 2015 are chosen. We can make the
following observations: (1) Our model significantly achieves
good performance: on CUHK03, the gap is 10.1% using the
manually cropped images and 16.0% using the detected ones.
The gap is even bigger for Market, particular on the mAP
metric: 26.0% over Gated S-CNN [13] under the single query
setting. (2) The best competitors on these two large datasets
are all deep learning based. However, their advantages over the
hand-crafted feature based models are modest (especially on
Market) and far less pronounced than what is widely observed
in other visual recognition tasks. This is because the large Re-
ID datasets are still relatively small to release the full potential
of a deep model. However, with our model, the gap is clear
now.
Results on small datasets On the three smaller datasets,
the ImageNet-pretrained base model is first trained using

VIPeR PRID CUHK01
(Nt=871/485)

TMA [31] 43.8 - -
`1 GL [32] 41.5 30.1 -/50.1

Siamese LSTM [30] 42.4 - -
DNS [5] 51.1 40.9 -/69.0

MCP-CNN [7] 47.8 22.0 -/53.7
Gated S-CNN [13] 37.8 - -

EDM [15] 40.9 - 86.6/-
Joint Learning [16] 35.8 - 72.5/-

CAN [14] - - 81.0/-
Ours 56.3 43.6 93.2 / 77.0

TABLE III
SUPERVISED RESULTS ON VIPER, PRID AND CUHK01. *THE DGD

RESULTS ON PRID WERE OBTAINED BY USING 10 TIMES MORE TRAINING
IMAGES FROM THE ORIGINAL PRID VIDEO DATASET, GIVING IT A HUGE

UNFAIR ADVANTAGE.

R1 R5 R10 R20
One-stepped 47.6 77.2 86.8 93.1
Two-stepped 56.3 83.3 90.5 96.0

TABLE IV
TWO-STEPPED VS. ONE-STEPPED FINE-TUNING ON VIPER

VIPeR PRID CUHK01
CDTL [33] 31.5 24.2 27.1
`1 GL [32] 33.5 25.0 41.0

Ours 45.1 36.2 68.8

TABLE V
UNSUPERVISED TRANSFER LEARNING RESULTS

CUHK03+Market. We then apply the two-stepped fine-tuning
strategy on the target VIPeR/PRID/CUHK01 dataset. The
comparative results are presented in Table III. Note that the
compared hand-crafted feature based models have two sub-
groups: those with one type of feature and those using multiple
features based on model fusion/ensemble. In addition, most
compared deep models use transfer learning, but with the stan-
dard one-stepped fine-tuning (typically from CUHK03+Market
to the target dataset). It can be seen that our deep Re-ID model
achieves the best results on all three datasets.
Ablation study In this experiment, we evaluate the con-
tribution of the proposed two-stepped fine-tuning with proxy
classifier learning strategy, in comparison with the standard
ones-stepped fine-tuning strategy used by most previous deep
Re-ID models. Table IV shows that the two-stepped fine-
tuning strategy brings about 8.7% at Rank 1 on VIPeR. This
suggests that the two-stepped fine-tuning strategy is much
more effective for knowledge transfer in deep Re-ID.

C. Unsupervised Transfer Learning

Comparative results Our co-training based unsupervised
transfer learning model is compared against the best reported
results on the three small datasets in Table V. Note that to the
best of our knowledge, no published deep Re-ID model has at-
tempted this challenging setting. The results clearly show that
we can beat the existing hand-crafted features based models by
big margins. Compared with the supervised learning results in
Table III, our unsupervised model is very competitive, beating
most of them, particularly the deep learning based ones.
Ablation study In this experiment, the effectiveness of
the co-training strategy is evaluated. Our unsupervised model
alternates between a pseudo-label semantic bootstrapping deep
model and a graph-regularised subspace learning model. Table
VI shows that both models are effective on their own and when
combined in our co-training framework, boost the performance
by 2-3%.

R1 R5 R10 R20
Semantic Bootstrapping 42.8 66.9 77.3 85.9

Subspace 42.3 71.5 79.8 87.5
AE 36.4 62.3 74.0 81.9

Adversarial [10] 22.8 38.6 50.3 63.9
Ours 45.1 73.1 81.7 89.4

TABLE VI
EVALUATIONS ON ALTERNATIVE UNSUPERVISED MODEL ON VIPER



Alternative Unsupervised Transfer Learning Models We
also compare our model with two alternative unsupervised
transfer learning methods. The first one combines a CNN
with an autoencoder. In our CNN+autoencoder model, the
input layer of the autoencoder is the feature output of the
base network; the middle layer dimension is set to 512 and
the output layer has the same dimension as the input layer
(1,024). Note that since the size of target dataset is too small
to train the AE from scratch, we initialize the parameters
of the AE layers by first pretraining them using images
in the source dataset. The second model compared is the
deep unsupervised domain alignment model using gradient
reversal and adversarial learning [10]. Specifically, we add a
domain classifier connected to the feature extractor (i.e. our
base network) via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the back-
propagation based training. The results in Table VI show that
both the compared models yield much weaker performance
than the proposed co-training based model. The autoencoder
model is weaker because it is not discriminative.

VI. CONCLUSION

We have proposed a couple of deep transfer learning strate-
gies to tackle the challenging person Re-ID problem with
small datasets. Our experiments validated the claim that a two-
stepped fine-tuning method with proxy classifier learning is
effective for supervised transfer learning with our deep Re-ID
model. More importantly, we show a co-training based deep
unsupervised transfer learning model can achieve good Re-ID
performance without any labelled data.
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