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Abstract. Recent studies found that in voxel-based neuroimage analy-
sis, detecting and differentiating “procedural bias” that are introduced
during the preprocessing steps from lesion features, not only can help
boost accuracy but also can improve interpretability. To the best of
our knowledge, GSplit LBI is the first model proposed in the liter-
ature to simultaneously capture both procedural bias and lesion fea-
tures. Despite the fact that it can improve prediction power by lever-
aging the procedural bias, it may select spurious features due to the
multicollinearity in high dimensional space. Moreover, it does not take
into account the heterogeneity of these two types of features. In fact,
the procedural bias and lesion features differ in terms of volumetric
change and spatial correlation pattern. To address these issues, we pro-
pose a “two-groups” Empirical-Bayes method called “FDR-HS” (False-
Discovery-Rate Heterogenous Smoothing). Such method is able to not
only avoid multicollinearity, but also exploit the heterogenous spatial
patterns of features. In addition, it enjoys the simplicity in implementa-
tion by introducing hidden variables, which turns the problem into a con-
vex optimization scheme and can be solved efficiently by the expectation-
maximum (EM) algorithm. Empirical experiments have been evaluated
on the Alzheimer’s Disease Neuroimage Initiative (ADNI) database. The
advantage of the proposed model is verified by improved interpretability
and prediction power using selected features by FDR-HS.
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1 Introduction

In recent years, the issue of model interpretability attracts an increasing
attention in voxel-based neuroimage analysis of disease prediction, e.g. [9,5].
Examples include, but not limited to, the preprocessed features on structural
Magnetic Resonance Imaging (sMRI) images that usually contain the following
voxel-wise features: (1) lesion features that are contributed to the disease (2) pro-
cedural bias introduced during the preprocessing steps and shown to be helpful
in classification [12,3] (3) irrelevant or null features which are uncorrelated with
disease label. Our goal is to stably select non-null features, i.e. lesion features
and procedural bias with high power/recall and low false discovery rate (FDR).

The lesion features have been the main focus in disease prediction. In demen-
tia disease such as Alzheimer’s Disease (AD), such features are thought to be
geometrically clustered in atrophied regions (hippocampus and medial temporal
lobe etc.), as shown by the red voxels in Fig. 1 (A). To explore such spatial
patterns, multivariate models with Total Variation [10] regularization can be
applied by enforcing smoothness on the voxels in neighbor, e.g. the n2GFL [15]
can stably identify the early damaged regions in AD by harnessing the lesions.

Recently, another type of features called procedural bias, which are intro-
duced during the preprocessing steps, are found to be helpful for disease pre-
diction [12]. Again, taking AD as an example, the procedural bias refer to the
mistakenly enlarged Gray Matter (GM) voxels surrounding locations with cere-
bral spinal fluid (CSF) spaces enlarged, e.g. lateral ventricle, as shown in Fig. 1
(A). This type of features has been ignored in the literature until recently, when
the GSplit LBI [12] was targeted on capturing both types of features via a split of
tasks of TV regularization (for lesions) and disease prediction with general linear
model (with procedural bias). By leveraging such bias, it can outperform models
which only focus on lesions in terms of prediction power and interpretability.

However, GSplit LBI may suffer from inaccurate feature selection due to the
following limitations in high dimensional feature space: 7: (1) multicollinearity:
high correlation among features in multivariate models [14]; (2) “heterogenous
features”: the procedural bias and lesion features differ in terms of volumetric
change (enlarged v.s. atrophied) and particularly spatial pattern (surroundingly
distributed v.s. spatially cohesive). Specifically, the multicollinearity could select
spurious null features which are inter-correlated with non-nulls. Moreover, GSplit
LBI fails to take into account the heterogeneity since it enforces correlation on
features without differentiation. Such problems altogether may result in inaccu-
rate selection of non-nulls, especially procedural bias. As shown in Fig. 1 (B)
and Table 2, the procedural bias selected by GSplit LBI are unstably scattered
on regions that are less informative than ventricle. Moreover, the collinearity
among features tends to select a subset of features among correlated ones, as
discussed in [16]. Such a limitation leads to the ignorance of many meaningful
regions (such as medial temporal lobe, thalamus etc.) of GSplit LBI in select-
ing lesion features, as identified by the purple frames of FDR-HS in Fig. 1 (B).

7 Please refer supplementary material for detailed and theoretical discussion
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Moreover, the two problems above may get worse as dimensionality grows. In our
experiments with a fine resolution (4× 4× 4 of 20,091 features), the prediction
accuracy of GSplit LBI deteriorates to 89.77% (as shown in Table 3), lower than
90.91% reported in [12] with a coarse resolution (8× 8× 8 of 2,527 features).

A B

Fig. 1. A: the features selected by FDR-HS (green denotes procedural bias; red denotes
lesion features which are geometrically clustered) B: comparison with GSplit LBI

To resolve the problems above, we propose a “two-groups” empirical Bayes
method to identify heterogenous features, called FDR-HS standing for “FDR
Heterogenous smoothing” in this paper. As a univariate FDR control method,
it avoids the collinearity problem by proceeding voxel-by-voxel, as discussed
in [7]. Moreover, it can deal with heterogeneity by regularizing on features with
different levels of spatial coherence in different feature groups, which remedies the
problem of losing spatial patterns that most conventional mass-univariate models
suffer from, such as two sample T-test, BHq [4] and LocalFDR [7]. By introducing
a binary latent variable, our problem turns into a convex optimization and can
be solved efficiently via EM algorithm like [13]. The method is applied to a voxel-
based sMRI analysis for AD with a fine resolution (4×4×4 of 20,091 features).
As a result, our proposed method exhibits a much stabler feature extraction
than GSplit LBI, and achieves much better classification accuracy at 91.48%.

2 Method

Our dataset consists of p voxels and N samples {xi, yi}N1 where xij denotes
the intensity value of the jth voxel of the ith sample and yi = {±1} indicates
the disease status (−1 denotes AD). The FDR-HS method is proposed to select
non-null features. Such method is the combination of “two-groups” model and
heterogenous regularization, which is illustrated in Fig. 2 and discussed below.
Model Formulation. Assuming for each voxel i ∈ {1, ..., p}, the statistic zi is
sampled from the following mixture:

zi ∼
1∑
k=0

p(si = k)p(zi|si = k) = cif1(zi) + (1− ci)f0(zi), (2.1)

where si is a latent variable indicating if the voxel i belongs to the group of
null features (si = 0) or the group of non-null ones (si = 1), ci = p(si = 1) =
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Fig. 2. Illustration of FDR-HS model.

sigmoid(βi) = eβi/
(
1 + eβi

)
and zi = Φ−1 (FN−2(ti)) with ti computed by two-

sample t-test. Correspondingly, f0(·) is density function of nulls, i.e. uncorrelated
with AD and f1(·) is that of non-nulls, i.e. procedural bias and lesions. The loss
function can thus be defined as negative log-likelihood of zi:

`(β) = −
N∑
i=1

log

Ç
eβi

1 + eβi
f1(zi) +

1

1 + eβi
f0(zi)

å
(2.2)

which can be viewed as logistic regression (when f0 and f1 are replaced with
binaries, as (2.6)) with identity design matrix since (2.1) proceeds voxel-by-voxel.
Hence, it does not have the problem of multicollinearity.
Selecting Features. To select features, we compute the posterior distribution
of si conditioned on zi and β̂i (estimated βi) and features with

p(si = 0|zi, β̂i) =
(1− ĉi)f0(zi)

ĉif1(zi) + (1− ĉi)f0(zi)
< γ

(
ĉi = eβ̂i/

(
1 + eβ̂i

))
(2.3)

are selected. The γ ∈ (0, 1) is pre-setting threshold parameter.
Heterogenous Spatial Smoothing. However, (2.1) may lose spatial structure
of non-nulls, especially lesion features. Besides, note that the procedural bias
and lesion features are heterogenous in terms of volumetric change and level
of spatial coherence. Hence, to capture the spatial structure of heterogenous
features, we split the graph of voxels which denotes as G 8 into three subgraphs,
i.e. G = G1 ∪G2 ∪G3 with:

G1 = (V1,E1) , V1 = {i : zi ≤ 0}, E1 = {(i, j) ∈ E : zi ≤ 0, zj ≤ 0} (2.4a)

G2 = (V2,E2) , V2 = {i : zi > 0}, E2 = {(i, j) ∈ E : zi > 0, zj > 0} (2.4b)

G3 = (V3,E3) , V3 = V1 ∪ V2, E3 = {(i, j) ∈ E : zi > 0, zj ≤ 0} (2.4c)

where G1 denotes the subgraph restricted on enlarged voxels (procedural bias
since -1 denotes AD); G2 denotes the subgraph restricted on degenerate vox-
els (lesion features); G3 denotes the bipartite graph with the edges connecting
enlarged and degenerate voxels. The optimization function can be redefined as:

g(β) = `(β) + λpro‖DG1
β‖1 + λles‖DG2

β‖1 + λpro-les‖DG3
β‖1 (2.5)

8 Here G = (V ,E), where V is the node set of voxels, E is the edge set of voxel pairs
in neighbor (e.g. 3-by-3-by-3).
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where DGk
β =

∑
(i,j)∈Ek βi − βj for k ∈ {1, 2, 3} denote graph difference op-

erator on Gk=1,2,3. By setting the group of regularization hyper-parameters
{λpro, λles, λpro-les} with different values, we can enforce spatial smoothness on
three subgraphs at different level in a contrast to the traditional homogeneous
regularization in [13]. The choice of each hyper-parameter, similar to [13], it is a
trade-off between over-fitting and over-smoothing. Too small value tends to se-
lect features more than needed, while too large value will oversmooth hence the
features are less clustered. Note that lesion features are more spatially coherent
than procedural bias and they are located in different regions, the reasonable
choice of regularization hyper-parameters tend to have λles ≤ λpro ≤ λpro-les.
Optimization. Note that the function (2.5) is not convex. Hence we adopted
the same idea in [13] that introduced the latent variables si and = 1 if zi ∼ f1(z)
and 0 if zi ∼ f0(z). The `(β) and g(β) are modified as:

`(β, s) =
N∑
i=1

{
log
(
1 + eβi

)
− siβi

}
(2.6)

g(β, s) = `(β, s) + λpro‖DG1
β‖1 + λles‖DG2

β‖1 + λpro-les‖DG3
β‖1 (2.7)

To solve (2.7), we can implement Expectation-Maximization (EM) algorithm to
alternatively solve β and s. Suppose currently we are in the (k + 1)th iteration.
In the E-step, we can estimate si by expectation value conditional on (βk, zi):

s̃i = E(si|βk, zi) =
cki f1(zi)

ck
i
f1(zi)+(1−ck

i
)f0(zi)

.

In the M-step, we plug s̃i into (2.7), denote ‹DG =
î
DGT

1
, λlesλpro

DGT
2
,
λpro-les
λpro

DGT
3

óT
and expand `(β|s̃k) using a second-order Taylor approximation at the βk. Then
the M-step turns into a generalized lasso problem with square loss:

min
β

1

2
‖ỹ − ‹Xβ‖22 + λpro‖‹DGβ‖1 (2.8)

where ‹X = diag{√w1, ...,
√
wp} and ỹi =

√
wi
Ä
βki − Oβ`(β|s̃ki )|

βk
/wi
ä

with

wi = O2
β`(β|s̃i)|βk . Note that X and ‹DG are sparse matrices, hence (2.8) can be

efficiently solved by Alternating Direction Method of Multipliers (ADMM) [6]
which has a complexity of O(p log p).
Estimation of f0 and f1. Before the iteration, we need to estimate f0(z) and
f1(z). The marginal distribution of z can be regarded as mixture models with
p components: z ∼ 1

p

∑p
i=1 gi(z), gi(z) = p(si)p(z|si) = cif1(z) + (1 − ci)f0(z)

Hence, the marginal distribution of z is f(z) = c̄f1(z) + (1 − c̄)f0(z), which
is equivalent to LocalFDR [7]. We can therefore implement the CM (Central
Matching) [7] method to estimate {f0(z), c̄} and kernel density to estimate f(z).
The f1(z) can thus be given as (f(z)− f0(z)c̄) /(1− c̄).

3 Experimental Results

In this section, we evaluate the proposed method by applying it on the ADNI
database http://adni.loni.ucla.edu. The database is split into 1.5T and 3.0T

http://adni.loni.ucla.edu


6 Xinwei Sun et al.

(namely 15 and 30) MRI scanner magnetic field strength datasets. The 15 dataset
contains 64 AD, 110 MCI (Mild Cognitive Impairment) and 90 NC, while the
30 dataset contains 66 AD and 110 NC. After applying DARTEL VBM [2]
preprocessing pipeline on the data with scale of 4×4×4 mm3 voxel size, there
are in total 20,091 voxels with average values in GM population on template
greater than 0.1 and they are served as input features. We designed experiments
on 1.5T AD/NC, 1.5T MCI/NC and 3.0T AD/NC tasks, namely 15ADNC,
15MCINC and 30ADNC, respectively.

3.1 Prediction Results

To test the efficacy of selected features by FDR-HS and compare it with
other univariate models (as listed in Table 1), we feed them into elastic net clas-
sifier, which has been one of the state-of-the-arts in the prediction of neuroimage
data [11]. The hyper-parameters are determined by grid-search. In details, the
threshold hyper-parameter of p-value in T-test and q-value in BHq are optimized
through {0.001, 0.01, 0.02, 0.05, 0.1}; the threshold hyper-parameter for choosing
non-nulls, i.e. γ for FDR-HS (2.3) and the counterpart of LocalFDR [7], are
chosen from {0.1, 0.2, ..., 0.5}. Besides, the regularization parameters λpro, λles
and λpro-les of FDR-HS are ranged in {0.1, 0.2, ..., 2}. For elastic net, the regu-
larization parameter is chosen from {0.1, 0.2, ..., 2, 5, 10}; the mixture parameter
α is from {0, 0.01, ..., 1}. Moreover, we compare our model to GSplit LBI and
elastic net, adopting the same optimized strategy for hyper-parameters in [12]
(the top 300 negative voxels are identified as procedural bias [12]) and those of
elastic net following after the univariate models, as mentioned above.

A 10-fold cross-validation strategy is applied and the classification results for
all tasks are summarized in Table 1. As shown, our method yields better results
than others in all cases, that includes: (1) FDR-HS can select features with more
prediction power than other univariate models due to the ability to capture het-
erogenous spatial patterns; (2) FDR-HS can achieve better classification results
than multivariate methods in high dimensional settings, in which the non-nulls
may be represented by other nulls that are highly correlated with them.

Table 1. Comparison between FDR-HS and others on 10-fold classification result

Univariate + ElasticNet Multivariate
T-test BHq [4] LocalFDR [7] FDR-HS GSplit LBI [12] Elastic Net [16]

15ADNC 89.61% 89.61% 87.01% 90.26% 85.06% 87.01%

15MCINC 70.50% 71.00% 73.50% 75.00% 72.50% 72.00%

30ADNC 88.64% 89.77% 89.77% 91.48% 89.77% 88.07%

3.2 Feature Selection Analysis

We used 2-d images of 30ADNC to visualize the features of all methods
under the hyper-parameters that give the best accuracy. As shown in Fig. 3,
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Fig. 3. The comparison of FDR-HS between others in terms of feature selection
(30ADNC). Red denotes lesions; blue denotes procedural bias.

the lesion features selected by FDR-HS are located clustered in early damaged
regions; while procedural bias are surrounding around lateral ventricle. Besides,
such a result is given by λles < λpro < λpro-les, which agrees with that the larger
value results in features with lower level of spatial coherence. In contrast, the
lesions selected by T-test and BHq are scattered and redundant; some procedural
bias around lateral ventricle are missed by BHq and LocalFDR. Moreover, GSplit
LBI selected procedural bias on regions with CSF space less enlarged than lateral
ventricle; besides, it ignored lesions located in medial temporal lobe, Thalamus
and Fusiform etc., which are believed to be the early damaged regions [1,8].

Besides, we also evaluated the stability of selected features using multi-set
Dice Coefficient (mDC) measurement defined in [15]. Larger mDC implies more
stable feature selection. As shown in Table 2, our model can obtain more stable
results than GSplit LBI which suffer the “collinearity” problem.

Table 2. Comparison between FDR-HS and others on stability (measured by mDC)

T-test BHq LocalFDR FDR-HS GSplit LBI

mDC(+) (Lesion features) 0.6705 0.6248 0.6698 0.6842 0.4598

mDC(−) (Procedural Bias) 0.6267 0.5541 0.5127 0.6540 0.3033

4 Conclusions

In this paper, a “two-groups” Empirical-Bayes model is proposed to stably
and efficiently select interpretable heterogenous features in voxel-based neuroim-
age analysis. By modeling prior probability voxel-by-voxel and using a heteroge-
nous regularization, the model can avoid multicollinearity and exploit spatial
patterns of features. With experiments on ADNI database, the features selected
by our models have better interpretability and prediction power than others.
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